• Title/Summary/Keyword: 배기가스압력

Search Result 203, Processing Time 0.034 seconds

CFD를 이용한 흡수탑 내 유동 균일효과 연구

  • 이춘만;이호경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.106-106
    • /
    • 2004
  • 보일러에서 연소된 후 배출된 가스는 탈황목적으로 설치된 흡수탑 내에 유입되어 Slurry Spray Nozzle에서 분사된 Limestone Slurry에 의해 배기가스중의 SO$_2$를 흡수한 다음 반응조로 떨어지게 되지만 분사된 액적의 일부는 배기가스의 압력에 의하여 같은 유동 방향으로 미세한 Mist의 형태로 배기가스와 함께 흡수탑의 Outlet Duct를 통해 빠져나간다. 이 Mist(액적크기 40 $\mu\textrm{m}$이하)에는 고형 성분이 함유되어 있는데 보통 Chloride농도가 높아 탈황설비 후단 (duct, GGH, Stack)에 plugging, 부식 등의 문제를 유발하므로 Spray Header상부에서 Mist Eliminator를 설치하여 Mist를 제거하도록 한다.(중략)

  • PDF

Residual gas analysis of small cavity for emissive flat panel display (미소체적을 갖는 평판표시소자용 패널내부의 잔류가스 분석)

  • 조영래;오재열;최정옥;김봉철;이병교;이진호;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The total pressure and partial pressure of small cavity for flat panel display have been successfully measured by using an ultra-high vacuum chamber with mass spectrometer. The total pressure in the panel was in the range of $10^{-6}$ Torr and the major partial pressure affecting increase in total pressure were those of Ar, $CH_4$and He. The baking temperature during evacuation process was very important for high-vacuum package, the total pressure and partial pressure of $CH_4$ were decreased as the increase of baking temperature.

  • PDF

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

분자류 영역에 따른 터보분자펌프(TMP) 배기속도 측정에 관한 연구

  • Gang, Sang-Baek;Sin, Jin-Hyeon;Cha, Deok-Jun;Jeong, Wan-Seop;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.46-46
    • /
    • 2010
  • 고진공펌프 중의 하나인 터보분자펌프(turbo-molecular pump: TMP)는 반도체/디스플레이 등 첨단 공정에서 진공 환경을 조성하는 핵심장비로서 현재 한국표준과학연구원 진공기술센터에서 개발 중인 고진공펌프 종합특성평가시스템을 구축 중이며, 1000 L/s 및 2500L/s 배기속도 용량을 가지는 터보분자펌프(TMP)의 database를 구축하고 있다. 이에 터보분자펌프(TMP)의 배기속도 측정 시 사용되는 가스의 분자류 영역에 따른 배기속도의 변화를 연구하고자 한다. 터보분자펌프(TMP)의 배기속도는 분자류 영역에 따라 상이한 배기속도를 가진다. 특히 가벼운 분자들은 터보분자펌프(TMP)로 배기시키기 어려우며, 분자량이 작은 가스들은 분자량이 큰가스 분자들에 비해 압축비(compression ratio)도 작아진다. 압축비가 큰 경우에는 실재 운전조건에 무관하게 배기속도가 최대값을 가지지만, 압축비가 작을 경우에는 운전 시 터보분자펌프(TMP)의 압축비에 따라 배기속도가 달라 질 수 있으며, 압축비는 펌프의 inlet에서의 압력과 exhaust에서의 압력의 비이다. 즉, 가벼운 기체 분자(H2, He 등)들은 무거운 기체 분자(N2, Ar 등)들에 비해 배기속력이 작아진다. 현재 개발 중인 한국표준과학연구원 진공기술센터의 고진공 종합특성평가시스템을 이용하여 분자류 영역에 따른 가벼운 기체 분자와 무거운 기체 분자의 배기속도를 측정하여 분자류 영역에 따라 상이한 배기속도의 변화를 연구하고자 한다. 본 논문에서는 터보분자펌프(TMP)의 분자류 영역에 따른 가벼운 기체 He과 무거운 기체 N2를 사용하여 압축비의 변화와 배기속도 측정에 관해 상관관계를 제시하며, 분자류 영역에 따른 터보분자펌프(TMP)의 배기속도 운전성능을 제시하고자 한다.

  • PDF

An usefulness study on estimation and control method of EGR ratio using intake manifold pressure in an gasoline engine (가솔린엔진에서 흡기관 압력을 이용한 EGR율의 추정 및 제어 방법에 관한 유용성 연구)

  • Park, Hyeong-Seon;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.806-813
    • /
    • 2014
  • The EGR system being reburned the part of the exhaust gas through intake system indicates more favorable emission characteristics to reduce NOx in a gasoline engine, but the case of inappropriate exhaust gas quantity induced from engine is fallen engine power caused by unstable combustion. In this study, we examined a method to predict EGR ratio according to various engine operation condition based by intake manifold pressure and confirmed such a prediction data through an experimental method. And after having constituted feedback EGR control algorithm in a base with such a prediction data, we acquired qualitatively similar results by having compared data provided through an EGR feedback control experiment with the data which calculated quantity of residual gas for the engine operation condition. Therefore, the applied algorithm and the system for feedback EGR control showed feasibility applied to real electronic control EGR technology.

Pressure Recovery in a supersonic ejector of a high altitude testing chamber (초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.833-837
    • /
    • 2010
  • This study aims at finding an optimal exhaust diffuser design of a high altitude testing chamber for a low bypass turbofan engine (F404-402) with thrust pound force of 17,700 and air mass flow rate of 66kg/s ejecting at a speed of Mach 1.66. The final proposed ejector size has better pressure recovery characteristics and targets to reduce operational cost at engine performance testing. Conventional high altitude test chamber layout was adopted and first drawn in two dimensions using Autocad software so as to determine the gas path, the ejector frontal size was then determined from gas dynamics equations considering traditional gas ejection method where both the engine exhaust and cell cooling air are exhausted via the ejector. Modification to a smaller ejector with an alternative secondary cell cooling exhaust port was then performed and modelled in 3D using Solid Works software.

  • PDF

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

Fundamental design consideration for optimum performance in altitude test cell facility (고공시험설비의 전체 사양을 결정하는 시험부를 중심으로 설비개발시의 주요 고려사항)

  • Choi, Kyoung-Ho;Lee, Jung-Hyung;Owino, George;Lee, Dae-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.411-415
    • /
    • 2008
  • This paper presents on design factor considered in an altitude test cell facility to determine the best sizing to optimize exhaust diffuser pressure recovery and the exact cooling load required to be supplied under transient operation. Engine simulation was performed to analyse the exhaust gas temperature, exit mass flow rate, specific fuel consumption and exhaust velocity helpful in determining secondary mass air flow and the mixed air temperature entering the ejector. based on this, the amount of cooling load was deduced. It was found that improved pressure recovery reduces operational cost(air supply facility, cooling water).

  • PDF

Study on the Separation of CO2 from Flue Gas Using Polysulfone Hollow Fiber Membrane (폴리설폰 중공사막을 이용한 연소 배기가스 중 이산화탄소 분리에 관한 연구)

  • Kim, Seongcheon;Chun, Jeonghyeon;Chun, Youngnam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • In this research, polysulfone hollow fiber membrane was used to recover $CO_2$ which is one of greenhouse gases from flue gas stream being emitted after the combustion of fossil fuels. The prerequisite requirement is to design the membrane process producing high-purity $CO_2$ from flue gas. For separation of $CO_2$, a membrane module and flue gas containing 10% carbon dioxide was used. The effects of operating conditions such as pressure, temperature, feed gas composition and multi-stage membrane on separation performance were examined at various stage cuts. Higher operating pressure and temperature increased carbon dioxide concentration and recovery ratio in permeate. Recovery ratio and separation efficiency increased if a higher content of $CO_2$ injection gas composition. Three-stage membrane system was producing a 95% $CO_2$ with 90% recovery from flue gas. The separation efficiency of three-stage membrane system was higher than one-stage system.

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.