• Title/Summary/Keyword: 배관해석

Search Result 613, Processing Time 0.025 seconds

Stress Analysis of the GEO-KOMPSAT-2 Tubing System (정지궤도복합위성 추진계 배관망 구조해석)

  • Jeong, Gyu;Lim, Jae Hyuk;Chae, Jongwon;Jeon, Hyung-Yoll
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this paper, the structural analysis of the Geostationary Korea Multi-Purpose Satellite-2 (GEO-KOMPSAT-2) tubing system is discussed, and the structural integrity of the tubing system is assessed by comparative analysis with the results of overseas partner AIRBUS. Securing structural reliability of the tubing system is a very important key element of the propulsion system of the GEO-KOMPSAT-2 satellite. Therefore, FE modeling of the propulsion tubing was carried out directly using the CAE program, and structural analysis was performed to evaluate the stress state under launch conditions. Hoop stress, axial stress, bending stress, and torsion stress were calculated according to diverse load conditions by using pressure stress analysis, thruster alignment analysis, sine qualification load analysis, and random qualification load analysis. From the results, the Margin of Safety (MoS) of the tubing system is evaluated, and we can verify the structural integrity of the tubing system when subjected to various launch loads.

A Study on Pipeline Network Analysis for Predicting Pressure and Flow rate Transients in City-gas Supply Lines (도시가스 공급라인의 압력 및 유량변화 예측을 위한 배관망 해석 연구)

  • Nam, Jin-Hyun;Cho, Chan-Young;Jang, Sung-Pill;Lim, Si-Hyung;Shin, Dong-Hoon;Chung, Tae-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • The deviation of measured pressures in pipeline networks from normal or reference pressures is useful information for judging the operation of the pipeline networks. A cost-effective monitoring of pipeline networks including a leak detection capability can be realized when transient pressure variation is accurately predicted using measured conditions at supply- and demand-sides of the networks. In this study, a pipeline network analysis program was developed based on one-dimensional flow equations for compressible fluids. The validity of the present analysis was demonstrated by simulating the flow in a straight pipeline and comparing the results with the previously reported ones. Pressure and flow rate transients in several simple city-gas pipeline networks were also analyzed to show the usefulness of the developed program.

  • PDF

Earthquake Response Analysis of a Buried Gas Pipeline (매설가스배관의 지진응답해석)

  • Lee, Do-Hyung;Cho, Kyu-Sang;Chung, Tae-Young;Kong, Jung-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.41-52
    • /
    • 2007
  • Earthquake time-history analyses have been carried out for a buried gas pipeline of X65 which is of popular use in Korea. Parameters included are shape of a buried gas pipeline, soil characteristics, single and multiple earthquake input ground motions and burial depths. Predicted response of strain and relative displacement are then compared with allowable strain and displacement capacity calculated by Guidelines for the Seismic Design of Buried Gas Pipelines, KOGAS. Comparative studies show that strains are in general affected by the burial depths together with change of soil conditions. Regarding the relative displacement, while axial relative displacement is not influenced by the burial depths, transverse relative displacement is affected by both burial depths as well as soil conditions. In all, the current study is encouraged to give a useful information for healthy earthquake evaluation of a buried pipeline.

고리 4호기 가압기 밀림배관 열성층 영향 평가

  • Lee, Seon-Ki;Lee, Hyun;Kim, Tae-Ryong;Kim, Beom-Nyeon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.857-863
    • /
    • 1998
  • 배관내에서 서로 다른 온도의 유체가 밀도차에 의해서 층이 분리된 채 존재하는 현상을 열성층 (thermal stratification) 현상이라 부르며, 이 현상에 의한 과도한 열응력은 배관의 건전성을 저해할 수 있다. 국내 원전의 경우 영광 3,4호기 이전의 밀림배관에서는 열성층 영향을 고려치 못하여 이에 대한 건전성 평가가 요구되고 있다. 본 연구에서는 고리 4호기 가압기 밀림배관을 대상으로 밀림배관내 유동해석 및 발전소 전 운전조건에 대하여 밀림배관 단면 온도분포 실측실험을 통하여 열성층화 현상의 발생 정도를 확인 하였으며 실측 온도 데이터를 이용하여 열응력해석 등을 수행함으로써 밀림배관의 열성층 영향을 평가한 결과 건전함이 확인되었다.

  • PDF

A Pipeline Network Analysis on the Source and the Relation with Pipe Diameter of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 원인과 배관경과의 상관관계에 대한 배관망해석 연구)

  • Shin, Chang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • Generally, the flow hunting is observed in almost all of the orifice meters but the intensity of the flow hunting is different at each metering system. In order to investigate the relations between pipe diameter and the flow instability or the flow hunting in a real metering system, a one-dimensional pipeline network model was built and analyzed for the examination of flow characteristics and relations to the flow hunting, changing diameters of the meter and the pipes before and after the meter. Finally, the effects of pressuredifference variation and flow hunting following to the variations of the diameters of the meter and the pipes before and after the meter were investigated and the relations were examined as well.

Structural Safety Assessment of Piping Used in Offshore Plants According to Thermal Load and Motion (해양플랜트에 사용되는 배관의 열 하중과 구조물의 운동에 따른 구조안전성 평가)

  • Ryu, Bo Rim;Kang, Ho Keun;Duong, Phan Anh;Lee, Jin Uk
    • Journal of Navigation and Port Research
    • /
    • v.45 no.4
    • /
    • pp.212-223
    • /
    • 2021
  • The objective of this study was to evaluate structural safety according to environmental conditions acting on the piping of offshore structure and the motion of the structure. As for conditions acting on the piping, the maximum and minimum temperature conditions were used to analyze the design conditions of N2 generator. The motion of the structure was calculated and applied according to the DNV(Det Norske Veritas) rule. Each condition was combined and a total of 26 load combinations were constructed according to thermal load, motion load, and presence or absence of pipe support. Analysis was performed using a commercial program MSC Patran/Nastran. Thermal analysis was performed by applying the steady-state method, Sol 153. Thermal-structural coupled analysis was performed using Sol 101, a linear-static method. As a result of the analysis, the stress tended to increase when temperature inside the pipe was lower in Set 1 and Set 2, when temperature was higher in Set 3, and when the temperature difference between the inside and outside of the pipe in Set 4 was increased. However, the sum of stresses in the condition with only temperature load and the condition with only the kinetic load did not show the same value as the stress in the composite load condition of two loads. That is, the influence of the motion load varied depending on the direction of motion, the arrangement of pipes, and the position of the support. Therefore, it is necessary to comprehensively consider the size and direction of the motion load acting on the piping, the arrangement of the piping, and the location of the pipe supports during the design of piping.

Incidents Study in Pipelines (외국 배관손상 사례분석)

  • 김우식;김철만;홍성호
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.185-191
    • /
    • 1997
  • 현재 우리나라에는 상당량의 천연가스 배관 및 송유관이 지하에 매설되어 있고 그 길이는 매년 큰 폭으로 증가하고 있다. 이러한 배관은 배관건설공사 및 공사후 유지, 보수 관리시 배관의 파괴와 관련된 여러가지 상황이 존재할 수 있다. 즉 외부에서 작용하는 다양한 요인이나 배관 내부요인에 의해 배관이 완전한 파단까지는 이르지 않더라도 손상을 받는 경우가 생긴다. 배관에 손상이 발생하였을 때 그 원인을 규명하고 처리방안을 마련하는 작업이 필요하다. 이러한 것들을 사전에 미리 예방하고 손상해석을 올바르게 하는데 필요한 것이 배관손상사례에 대한 데이터베이스이다.

  • PDF

A Study on Seismic Design Method Considering Physical Properties of Piping Material (배관 재료의 물성을 고려한 내진설계 방법에 관한 연구)

  • Bang, Dae-Suk;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • In this study, we compare the engineering seismic design method considering the physical properties of piping materials and the specification-oriented design method according to the seismic design standards of fire fighting equipment. In the case of the seismic design method considering the physical properties of piping materials, the safety of the piping will be analyzed through the combined value of the torsional stress and the bending stress generated in the piping. However, in the case of the design-centered design method, instead of the safety of the piping material, it calculates the moving force of the pipe and interprets whether or not the shaking prevention strut can bear. Fire extinguishing equipment piping is possible through safety analysis of stress and displacement of piping material because piping safety can not be secured via unstable force generated in a certain section with one connected structure is there. Therefore, it is necessary to apply analytical method considering seismic performance of building structure and material properties of piping for seismic design of safe fire extinguishing system piping.

Development of numerical method to predict broadband radiation noise resulting in fluid-induced vibration and acoustic-induced vibration of pipe (배관의 유동 유발 진동 및 음향 유발 진동 기인 광대역 방사 소음 예측을 위한 수치 해석 기법 개발)

  • Sangheon Lee;Cheolung Cheong;Songjune Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.112-121
    • /
    • 2024
  • The pipping system is widely used in many industries as equipment for transporting fluids over long distances. In high-pressure pipe, as the speed of the fluid increases, a loud noise is generated. Therefore, various studies have been conducted to reduce pipe noise. In this paper, a pipe noise analysis was developed to predict and quantitatively assess the flow-induced vibration and acoustic-induced vibration due to valve flow in high-temperature and high-pressure. To do this, a high-fidelity fluid analysis technique was developed for predicting internal flow in the pipe with valve. In additional, the contribution of compressible/incompressible pressure by frequency band was evaluated using the wavenumber-frequency analysis. To predict a low/middle frequency pipe noise, the vibroacoustic analysis method was developed based on Finite Element Method (FEM). And the pipe noise prediction method for the middle/high frequency was developed based on Statistical Energy Analysis (SEA).

Identifying Risk Management Locations for Synthetic Natural Gas Plant Using Pipe Stress Analysis and Finite Element Analysis (배관응력해석 및 유한요소해석에 의한 SNG플랜트의 리스크 관리 위치 선정)

  • Erten, Deniz Taygun;Yu, Jong Min;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • While they are becoming more viable, synthetic natural gas (SNG) plants, with their high temperatures and pressures, are still heavily dependent on advancements in the state-of-the-art technologies. However, most of the current work in the literature is focused on optimizing chemical processes and process variables, with little work being done on relevant mechanical damage and maintenance engineering. In this study, a combination of pipe system stress analysis and detailed local stress analysis was implemented to prioritize the inspection locations for main pipes of SNG plant in accordance to ASME B31.3. A pipe system stress analysis was conducted for pre-selecting critical locations by considering design condition and actual operating conditions such as heat-up and cool-down. Identified critical locations were further analyzed using a finite element method to locate specific high-stress points. Resultant stress values met ASME B31.3 code standards for the gasification reactor and lower transition piece (bend Y in Fig.1); however, it is recommended that the vertical displacement of bend Y be restricted more. The results presented here provide valuable information for future risk based maintenance inspection and further safe operation considerations.