• Title/Summary/Keyword: 배관설계

Search Result 454, Processing Time 0.031 seconds

Research for Detailed Technical Standards of Exposure Pipe (노출배관의 세부 기술기준 연구)

  • Kang, Byung-IK;Park, Woo-Il;Yim, Sang-Sik;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The exposed pipe requires higher durability because is directly contacted with the outside air unlike the buried pipe. For this purpose, clear detailed technical standards are essential in the design and construction of piping systems. However, the existing technical standards were not able to evaluate the durability considering the characteristics of piping, so many questions were raised in the field. Therefore, through the present study, the existing detailed technical standards are revised to propose measures to secure the durability of exposed piping.

Study of a Pressure Tube for Measuring pressure of a Solid Rocket Motor at High Altitude Environment (고고도환경을 고려한 SRM 압력계측배관에 관한 연구)

  • Lee, Dong-Won;Lee, Won-Bok;Koh, Hyeon-Seok;Kil, Gyoung-Sub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • When someone measuring for pressure of a Solid Rocket Motor(SRM) at Static Firing Test, generally, used with pressure tube to be filled in Oil. But, if you used pressure tube with oil, you were worried about possibility of spilled oil when you measured pressure in SRM at high altitude environment. Because it usually connected at ignitor. In this paper, We described how to make a pressure tube without oil and matters to be attended to design it.

  • PDF

Structural Integrity of a Fuel Assembly for the Secondary Side Pipe Breaks (2차측 배관파단에 대한 핵연료 집합체의 구조 건전성)

  • Jhung, M. J.
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.827-834
    • /
    • 1996
  • The effect of pipe breaks in the secondary side is investigated as a part of the fuel assembly qualification program. Using the detailed dynamic analysis of a reactor core, peak responses for the motions induced from pipe breaks are obtained for a detailed core model. The secondary side pipe breaks such as main steam line and economizer feedwater line braksare considered because leak-before-break methodology has provided a technical basis for the elimination of double ended guillotine breaks of all high energy piping systems with a diameter of 10 inches or over in the primary side from the design basis. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are carefully investigated. Also, the stress analysis is performed and the effect of the secondary side pipe breaks on the fuel assembly structural integrity under the faulted condition is addressed.

  • PDF

Analytical Study on the Discharge Transients of a Steam Discharging Pipe (증기방출배관의 급격과도현상에 대한 해석적 연구)

  • 조봉현;김환열;강형석;배윤영;이계복
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • As in the other industrial processes, a nuclear power plant involves a steam relieving process through which condensable steam is discharged and condensed in a subcooled pool. An analysis of steam discharge transients was carried out using the method of characteristics to determine the flow characteristics and dynamic loads of piping that are used for structural design of the piping and its supports. The analysis included not only the steam flow rate but also the flow rates of the air and water which originally exist in the pipe. The analytical model was developed for a uniform pipe with friction through which the flow was discharged into a suppression pool. Including the combinations of system elements such as reservoir, valve and branching pipe lines. The piping flow characteristics and dynamic loads were calculated by varying system pressure, pipe length, and submergence depth. It was found that the dynamic load, water clearing time and water clearing velocity at the water/air interface were dependent not only on the system pressure and temperature but also on the pipe length and submergence depth.

  • PDF

A Study on Design Area of Fire Sprinkler System (스프링클러설비의 설계면적에 대한 연구)

  • Jeong, Kee-Sin
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.93-98
    • /
    • 2010
  • Even though the sprinkler system is a essential fire suppression system, the design engineers do not fully understand the concept of design area which sprinklers operate. They frequently made a mistake to form design area and calculate it. The shape of design area is a square or a rectangle which branch side line is a little longer than the cross main side. NFPA demands to lengthen the branch side to 1.2 times than the cross main side and FM demands 1.4 times. The longer the branch side at the same design area is, the bigger the water quantity and pressure is. At the results of hydraulic calculation of design areas, when the branch side is longer 1.2 times, the water quantity became 4.6% bigger than exact square and the pressure came to 4.67% bigger. When it is longer 1.4 times, the water quantity and the pressure are bigger 7.52%, 14.51%. Therefore, the sprinkler design engineers should follow the general rule of design area, exact square or rectangle which length along the branch line is a little longer than length along the cross main, to design more stable system.

A Presentation on the Manual Hydraulic Calculation Method of the Loop Type Fire Sprinkler System (Loop형 스프링클러 설비의 수리계산 방법에 대한 제시)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • There are three kinds of design method of the fire sprinkler systems. Grid type is connected all branch as a trapezoid. Loop type is connected cross-mains like circle. The last one is a tree type most commonly used. Grid type needs computer program to calculate the friction loss and flow rate apart from very simple form. In loop type, manual calculation is possible. Design engineer can draw up and calculate the demands without computer program. Because water supplies two direction in loop type, friction loss is smaller than tree type. Water distribution in operation area is uniform because of the small differences of sprinklers discharge pressure. Loop type is superior to tree type in respect of total pressure and flow rate. Using the small diameter pipe, the labor and construction cost will be decreased in the end. Loop type sprinkler design is rarely laid out because design engineers don't know the method. This paper is intended to inform that the loop type is better than the tree type in performance and economic point of view. And also this paper intend to use the loop type easily and widely.

Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates (다공판을 이용한 고압 가스 배관 내 밸브 유동 소음 저감에 대한 수치적 고찰)

  • Kim, Gyunam;Ku, Garam;Cheong, Cheolung;Kang, Woong;Kim, Kuksu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • In this study, a numerical methodology is proposed for evaluating valve flow noise in a pipe conveying high pressure gas, and the effects of perforated plates on reduction of such valve flow noise are quantitatively analyzed. First, high-accurate unsteady compressible Large Eddy Simulation techniques are utilized to predict flow and flow noise by a valve in a high-pressure pipe. The validity of the numerical result is confirmed by comparing the predicted wall pressure spectrum with the measured one. Next, the acoustic power of downstream-propagating acoustic waves due to the valve flow is analyzed using an acoustic power formula for acoustic waves propagating on mean flow in a pipe. Based on the analysis results, perforated plates are designed and installed downstream of the valve to suppress the valve flow noise and the acoustic power of downstream-going acoustic waves is predicted by using the same numerical procedure. The reduction by 9.5 dB is confirmed by comparing the predicted result with that of the existing system. Based on these results, the current numerical methodology is expected to be used to reduce valve flow noise in an existing system as well as in a design stage.

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.

The Development of Measurement system using Magnetic field in Pipe (자계를 이용한 배관 내의 대상물체 판별 시스템 개발)

  • Kim, Dug-Gun;Kim, Jae-Min;Seo, Kang;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.627-628
    • /
    • 2008
  • 본 논문에서는 수직 자계를 이용한 배관 내 자성체를 측정하는 시스템을 개발하였다. 자성체 면적 변화에 따른 측정 신호의 정밀도를 높이기 위해 배관 내 자기장의 크기 및 균일도를 고려한 설계 및 해석을 하였다. 인가 자기장의 크기는 반도체 소자의 노이즈 레벨($0.4{\sim}0.6$[G])보다 크고, 대상물체의 1% 면적 변화에 따른 ${\Delta}B$의 민감도를 고려하였으며, 코어의 형상 및 길이를 변화에 따른 배관 내 자기장의 크기와 균일도를 유한요소법을 이용하여 해석하였다.

  • PDF