본 논문에서는 고유얼굴 특성과 배경에 기반한 얼굴인식 기술을 제안한다. PCA를 이용한 얼굴 인식은 학습영역과 실험영역으로 나뉘는데, 학습영역에서 고유얼굴을 생성시키고 모든 학습영역을 이 얼굴 공간에 투영시켜 몇 개의 성분값을 저장한다. 그 후 각각의 사랑마다 저장된 성분들의 평균을 대표값으로 가지고 유클리디안 거리를 비교하여 얼굴을 인식하는 것이다. 하지만, 복잡한 배경에 있는 얼굴들을 인식할 때 EFR 방법은 얼굴인식에는 강하지만, 단정으로 조영과 환경변화에 민감하게 반응한다. 복잡한 배경에서 얼굴인식을 위해 배경 패턴을 학습하며, 배경영역은 배경패턴으로부터 생성되어 얼굴영역과 함께 얼굴 인식을 위하여 사용된다. 본 논문에서 제안한 방법이 EFR 방법보다 성능과 복잡한 배경하에서 매우 좋은 곁과를 나타냄을 확인할 수 있었다.
시트콤 동염상은 고정된 배경을 갖는 중 아웃에 연이어 오는 줌 인으로 구성되어 있고, 또한 활영되는 배경의 수는 한정되어 있는 특성이 때문에, 이러한 배경의 시각적 특성을 사용하여 배경들을 학습시키고 자동으로 분리시킬 수 있다. 본 논문에서는 신경망의 일종인 LVQ[1]를 사용하여 이러한 증류의 비디오 동영상에 대한 자동 배경 분류 방법을 제안한다. 우선, MPEG-7 시각 기술자를 이용하여 신(scene) 배경의 시각적인 특성을 추출하고 이러한 시각적 특성을 미리 제작자에 의해서 주어진 배경 점보로서 LVQ를 학습시킨다. 학습이 진행되면서 특정 배경의 시각적 특성은 LVQ의 가중치로서 표현되며, 다른 배경을 자동으로 분류하는데 사용된다 제안된 LVQ기반의 분류 방법을 사용한 두 종류의 시트콤 동영상에 대한 실험 결과는 분류에 대한 어떠한 하드코딩 없이 80-90%의 정확도로 시트콤 동영상의 배경을 자동으로 분류한다.
본 논문에서는 고유얼굴 특성에 기반한 강건한 얼굴 인식 기술을 제안한다. 전형적인 고유얼굴 인식방법은 학습영역에서 고유얼굴을 생성시키고, 모든 학습영상을 이 얼굴공간에 투영시켜 각각의 사람마다 저장된 성분들을 비교하거나 상관시켜 특징들을 추출합니다. 복잡한 배경에 있는 얼굴들을 인식할 때 EFR방법은 얼굴인식에는 강하지만, 얼굴과 배경들 사이의 구분을 실패하게 된다 배경에서 강건한 얼굴인식을 위해서 배경패턴을 학습하며, 배경영역은 배경패턴으로부터 생성되어 얼굴영역과 함께 얼굴 인식을 위하여 사용된다. 본 논문에서 제안한 방법이 EFR방법보다 성능과 복잡한 배경하에서 매우 좋은 결과를 나타냄을 확인할 수 있었다.
본 연구는 중학교 입학 전 다문화 배경 학생을 위한 학습 도구어 교육의 필요성을 밝히고 중학교 교과 학습에 필요한 학습 도구어를 선정하여 선정된 어휘 목록을 활용한 자기 주도적 학습 방안을 모색하는 것에 그 목적이 있다. 이를 위하여 본 연구에서는 실제적인 학습 도구어 목록을 마련할 필요가 있다고 판단하여 중학교 1학년 국어, 수학, 사회, 과학 교과서의 지문에 있는 학습 관련 어휘들을 조사하였고, 그 결과를 바탕으로 주요 학습 도구어를 선정하였다. 또한 선정된 학습 도구어를 활용하여 자기 주도적인 학습이 가능한 프로토타입 형태의 학습 도구어 학습 어플리케이션을 개발하였다. 본 연구에서 개발한 학습 어플리케이션을 활용하여 학습 도구어를 학습할 경우 다문화 배경 학생의 중학교 교과 학습 적응에 도움이 될 것으로 기대된다.
움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.
최근 인공지능을 활용하여 예술 작품에 몰입할 수 있도록 무대 효과를 디자인하는 연구가 진행되고 있다. 무대 효과 중에서 무대 배경은 공연의 분위기를 형성한다. 춤의 장르별로 무대 배경에 사용되는 이미지를 생성하기 위해 소셜 미디어 기반 무대 배경 생성 시스템이 있다. 하지만 같은 장르 춤은 동일한 무대 배경 이미지가 제공되는 문제가 있다. 같은 장르의 춤이지만 노래의 분위기를 반영하여 차별된 무대 배경 이미지를 제공하는 것이 필요하다. 본 논문은 노래 가사의 감정을 활용하여 Generative Adversarial Network(GAN)을 통해 각 노래의 분위기를 고려한 무대 배경 이미지를 생성하는 방법을 제안한다. GAN은 노래에 포함된 단락별 감정 단어를 추출하여 스타일을 생성하도록 학습된다. 학습된 GAN은 노래 가사에 포함된 감정 단어를 활용하여 곡의 분위기를 반영한 무대 배경 이미지를 생성한다. 노래 가사를 고려하여 무대 배경 이미지를 생성함으로써 곡의 분위기가 고려된 무대 배경 이미지 생성이 가능하다.
간접광고의 한형태인 영화나 드라마 속에 제품배치(PPL)는 온셋 배치와 크리에이티브 배치로 분류할 수 있다. 온셋 배치(on-set placement)는 맥락효과 속에 전경(foreground)에 해당되며, 크리에이티브 배치(creative placement)는 배경에 해당되기 때문에 소비자의 정보처리에 의한 기억효과가 다르게 나타난다. 온셋배치의 경우 자극의 현저성으로 인하여 정교화 가능성 모델이론의 설득의 중심경로를 통한 정보처리효과가 나타나기 때문에 명시적 학습을 하게 된다. 반면에 드라마 배경에 해당하는 PPL의 크리에이티브 배치는 정교화의 수단이 낮아서 배경의 여러 단서들과 함께 설득의 주변경로를 통한 정보처리를 할 것이다. 따라서 암묵적 학습을 할 가능성이 높게 나타나게 된다. 이러한 제품배치의 형태에 따른 학습기억의 형태는 조절변수인 관여도에 따라 다르게 나타날 것이다. 제품관여도가 높은 경우에는 크리에이티브 배치를 하여도 명시적 학습을 할 가능성이 많은 반면 제품관여도가 낮은 경우 크리에이티브 배치를 하게 되면, 암묵적 학습효과가 미약하거나 일어나지 않을 가능성이 많다. 그러므로 제품관여도가 낮은 상품의 경우에는 제품배치시 가능한한 크리에이티브 배치피하는 것이 유리 할 것이다.
Background Subtraction은 움직이는 물체 검출에 가장 많이 사용되는 방법 중 하나이다. 배경이 복잡하고 변화가 심한 경우, 배경을 실시간으로 얼마나 정확하게 학습하는가가 물체 검출의 정확도를 결정한다. Gaussian Mixture Model은 이러한 배경의 모델링에 가장 많이 쓰이는 방법이다. Gaussian Mixture Model은 확률적 학습 방법을 사용하는데, 이러한 방법은 물체가 자주 지나다니거나 물체가 멈춰있는 경우, 배경을 정확하게 모델링하지 못한다. 본 논문에서는 밝기 값에 대한 확률적 모델링과 밝기 값의 변화에 따른 처리를 결합하여 혼잡한 환경에서 배경을 정확하게 모델링할 수 있는 학습 방법을 제안한다.
초등예비교사들이 다문화 배경 학습자를 가르쳐 그들의 학업성취도를 높이는 것이 국가적 과제로 떠올랐다. 본 연구는 초등 예비교사를 양성하는 미국 대학의 예비교사들이 수업시연을 통해 다문화 배경 영어학습자를 가르칠 때 어떻게 자기 효능감이 향상되는지 고찰하였다. 대학의 수업을 플립드 러닝으로 설계하여 수업 전에 내용을 미리 학습한 뒤, 실제 수업시간에는 다문화 배경 영어학습자 대상 예비교사들의 ESL 수업시연을 연습하였다. 예비교사의 ESL 수업시연 동영상, 예비교사의 감상문 및 담당교수 인터뷰를 분석한 결과, 내용교과를 가르치는 초등학교 교실에서 다문화 배경 영어학습자를 잘 가르칠 수 있도록 예비교사들은 적절하게 준비되고 있다고 느꼈으며 자기 효능감이 향상되었다. 또한, 본 연구는 교사 교육자들이 플립드 러닝을 활용하여 수업시연과 같은 실제적인 학습 경험을 제공하여 다문화 배경 영어학습자를 잘 가르칠 수 있도록 예비교사를 준비시키는 방안을 덧붙였다. 마지막으로 이상의 연구를 한국의 상황에 적용하여 국제화 시대에 한국의 예비교사들도 다문화 학생을 가르칠 수 있도록 교사양성기관에서 준비될 필요가 있음을 지적하였다.
본 연구는 얼굴자극의 검사단계 표정변화와 검사 지연시간, 그리고 배경변화가 얼굴재인에 미치는 효과를 검증하기 위해 수행되었다. 실험 1에서는 학습단계에서 부정 표정 얼굴을 학습하고 검사단계에서 동일한 얼굴의 부정 표정과 중성 표정얼굴에 대한 재인 검사가 실시되었다. 실험 2에서는 학습단계에서 부정 표정 얼굴을 학습하고 검사단계에서 부정 표정과 긍정 표정얼굴에 대한 재인 검사가 실시되었다. 실험 3에서는 학습단계에서 중성 표정 얼굴을 학습하고, 검사단계에서 부정 표정과 중성 표정 얼굴에 대한 재인 검사가 실시되었다. 세 실험 모두 참가자들은 즉시 검사와 지연 검사 조건에 할당되었고, 재인검사에서 목표 얼굴자극들은 배경이 일치 조건으로 또한 불일치 조건으로 제시되었다. 실험 1과 실험2 모두에서 부적 표정에 대한 재인율이 높았다. 실험 3에서 중성 표정에 대한 재인율이 높았다. 즉, 세 개실험 모두에서 표정 일치 효과가 나타났다. 학습단계에서 제시된 얼굴 표정의 정서와는 상관없이 검사단계에서 표정이 학습단계와 일치할 때 얼굴 재인율은 증가하였다. 또한 표정 변화에 따른 효과는 배경 변화에 따라 상이하게 나타났다. 본 연구 결과로 얼굴은 표정이 달라지면 기억하기 힘들며, 배경의 변화와 시간 지연에 따라 영향을 받는 다는 점을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.