• Title/Summary/Keyword: 밭토양

Search Result 752, Processing Time 0.036 seconds

Simulation of Alpine Field Soil Loss by Outdoor Rainfall Simulator (실외인공강우에 의한 경사밭의 토양 유실량 모의)

  • Shin, Hyun-Jun;Won, Chul-Hee;Kim, Tae-Yoo;Choi, Eu-Tteum;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1242-1246
    • /
    • 2010
  • 호우기간 동안 내리는 빗방울의 타격에 의해 흙 입자는 침출수와 함께 이동하여 지표 아래 공극을 막는다. 다져진 지표면은 유출과 토양 유실의 원인이 된다. 발생원으로부터 유실되는 토양을 Polyacrylamide(PAM)과 지표피복재를 이용하여 저감하는 연구를 하였다. PAM은 토양 입자의 결합력을 강화시키고 이탈을 방지하여 토양 유실을 감소시키는데 효과적이다. 이 연구의 목적은 PAM을 덧붙인 볏짚거적, 볏짚거적+톱밥, 볏짚거적+왕겨 등을 이용하여 인공강우 동안 토양 유실을 저감하는 효과를 조사하는 것이다. 실험은 1시간 동안 강우를 모의했으며, 실험 도중에 6~7회 수질 샘플을 채취하였다. 초기유출시간은 총 4차 실험중에 2차를 제외한 나머지에서 볏짚거적+왕겨+PAM이 가장 느리게 유출되었다. SS와 탁도 항목에서 1차 실험을 제외한 나머지 실험에서 볏짚거적+톱밥+PAM이 효과적이었다. 단순히 PAM을 사용하는 것보다 잔여물(residue)을 같이 혼합한 피복재료가 토양 유실과 유출을 저감하는데 더욱 효과적인 것으로 나타났다. 본 연구 결과는 향후 농촌지역에 토양 유실저감에 필요한 자료로 활용할 수 있을 것이라 판단된다.

  • PDF

velvet leaf (외래 잡초 발생 및 방제전략(5) - 어저귀)

  • Lee, In-Yong
    • Life and Agrochemicals
    • /
    • v.30 no.1 s.244
    • /
    • pp.50-51
    • /
    • 2009
  • 어저귀는 사료용 곡물 수입시 혼입되어 사료작물 포장 중 옥수수밭에서 많이 발생된다. 효과적인 방제법은 토양처리제와 경엽처리제로 처리하여 밀도를 줄여나가는 것이다.

  • PDF

방제포커스 - 외래 잡초 발생 및 방제전략(11)

  • Lee, In-Yong
    • Life and Agrochemicals
    • /
    • s.250
    • /
    • pp.42-43
    • /
    • 2009
  • 도라지, 콩 등 작물뿐만 아니라 도로변의 코스모스 등의 화훼류에도 피해를 준다. 발생된 포기를 직접 손으로 제거하고 불로 태우는 것이 확실하나 발생면적이 넓을 경우에는 밭작물에 등록된 토양처리형 제초제로 방제한다.

  • PDF

Effects of Vegetative Buffers on Reducing Soil Erosion and Nutrient Loss of Highland Field in Korea (고랭지밭의 토양침식 저감을 위한 완충식생대의 효과)

  • Jin, Yong-Ik;Lee, Jeong-Tae;Lee, Gye-Jun;Hwang, Seon-Woong;Zhang, Yong-Seon;Park, Chang-Young;Seo, Myung-Chul;Ryu, Jong-Soo;Jeong, Jin-Cheol;Chung, Ill-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.231-238
    • /
    • 2009
  • This study was carried out to investigate the effect of vegetative buffer to reduce runoff and soil and nutrient loss at highland agricultural area. The soil of experimental field was classified as Ungyo series (Fine, Humic Hapludults). An area of each field with lysimeter was $50m^2(width\;2.5m{\times}length\;20m)$ and was a gradient of 17%. Chinese cabbage (Brassica campestris L.) was cultivated by general management in each field. For establishing vegetative buffer, rye (Secalecereale L.), tall fescue (Festucaarundinacea Schreb) and orchard grass (Dactylis glomerata L.) were planted at the edge of field. Rye buffers were 1m, 2m and 4m wide. Both orchard grass and tall fescue buffers were 2m wide. Vegetative buffers were set up in September 2005 and chinese cabbage was planted in June 2006. Soil loss, runoff and nutrient loss were measured from June to August in 2006. Since the precipitation amount was heavy in July, amounts of runoff, soil erosion and nutrient loss were the highest in July during this study period. In comparison with control, vegetative buffers of rye 2m, orchard grass 2m and tall fescue 2m reduced runoff by 3%, 1% and 2%, respectively. In comparison among width of rye buffer, rye 1m, rye 2m, and rye 4m reduced by 1%, 4% and 13%, respectively. Vegetative buffers of rye 2m, orchard grass 2m and tall fescue 2m showed the reducing of soil loss by 59%, 46% and 28%, respectively. In comparison among width of rye buffer, the highest reducing effect of 88% was observed in 4m treatment. Additionally, vegetative buffer reduced N, P and K losses in runoff and eroded soil which were 10 to 54%, 7 to 24% and 11 to 21%, respectively. In different widths, wider vegetative buffer showed lower loss of N, P and K in runoff and eroded soil. As a result of this study, the vegetative buffer of rye was most effective for reducing runoff and soil loss in comparisons with other plants. In addition, wider range of buffers recommended for reducing runoff and soil loss, if possible.

Fraction and Soil Pollution Assesment Index of heavy metals in cultivated land soils near the abandoned mine (폐광산지역 경작지 토양의 중금속 존재형태와 토양오염평가)

  • 김휘중;양재의;이재영;최상일;전상호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.53-63
    • /
    • 2003
  • Objectives of this research were to fractionate heavy metals in soil samples in the upper Okdong River basin and to assess the potential pollution index of each metal fraction. Soil samples were collected from the cultivated land soils and analyzed for physical and chemical properties. pH of cultivated soils ranged from 5.2 to 7.6. Contents of total kelhaldal nitrogen and loss on ignition were in the ranges of 0.6∼2.5%, and 1.9∼12.9%, respectively. Heavy metals in the cultivated land soils were higher in the abandoned closed coal mine near field soils than those in the paddy soils. Total concentrations of metals in the cultivated land soils were in the orders of Zn > Pb > Ni > Cu > Cd, exceed the corrective action level of the Soil Environment Conservation Law and higher than the naturals were abundance levels reported from uncontaminated cultivated land soils. Mobile fractions of metals were relatively small compared to the total concentrations. Soil Pollution Assesment Index (SPAI) values of each fraction of metals were leveled from Non polluted to Moderately polluted based on total concentrations. SPAI values of mobil fractions were lower than those of immobile fractions. Results on metal fractions and SPAI values of the cultivated land soils indicate that field soils samples were contaminated with heavy metals and had potential to cause a detrimental effects on plants. A prompt countermeasure to prevent field soils in the abandoned closed coal mine near fields are urgently needed.

Effects of Silica and Compost Application on the Availability of Accumulated Phosphate in Paddy and Upland Soils (축적인산(蓄積燐酸) 유효화(有效化)에 미치는 규산(珪酸)과 퇴비(堆肥)의 시용효과)

  • Lee, Chun-Hee;Cheon, Seong-Gun;Shin, Won-Kyo;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 1990
  • Field experiments were conducted to avail the accumulated phosphorus by silica 200kg/10a and compost 2,000kg/10a instead of phosphate fertilization in 1988 to 1989. Cultivated varieties were Dongjinbyeo in paddy soils of Av. $P_2O_5$ 233ppm, and Baegunkong in upland soils of Av. $P_2O_5$ 530ppm. The results were as follows. 1. Available phosphorus in the soil was increased about 60ppm in silica and compost application compared with control. Its increment rate by silica and compost application was higher in paddy soils than in upland soils. 2. Absorbed phosphorus by plant was increased in silica and compost application compared with control, whose difference was higher in soybean plant than in rice plant. 3. Amount of absorbed phosphorus in plant was negative in relation to soil DTPA-Fe, but was positive in relation to soil reduction and root nodule of soybean. 4. Persistence rate of phosphorus was about 80 percent in compost application and 100 percent in phosphate fertilization compared with control, and it was apt to decrease by silica. 5. The yield of rice was no difference between with and without phosphate fertilization, but the yield of soybean was increased 5 percent in none application compared with phosphate fertilization.

  • PDF

Dependence of 0.01M CaCl2 Soluble Phosphorus on Extractable P and P Sorptivity in Upland Soil (밭토양(土壤)에서 유효린산함량(有效燐酸含量)과 인산흡수능(燐酸吸收能)에 따른 0.01M CaCl2 가용(可溶) 인산농도(燐酸濃度) 변화(變化))

  • Yoon, Jung-Hui;Jung, Beung-Gan;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.266-270
    • /
    • 1998
  • The identification of soil P level that exceed crop requirement is a prerequisite in implementing sustainable management of fertilizer and manure P to prevent soil and freshwater from contamination. To investigate the relationship between 0.01M $CaCl_2$ soluble P, and available P and P sorption capacity of 40 soils, P content and P sorptivity were analyzed. Single linear relationship revealed the dependence of 0.01M $CaCl_2-P$ on available P($r^2=0.479$), bioavailable P($r^2=0.281$), P sorption($r^2=-0.465$) and P absorption coefficient($r^2=-0.056^{NS}$). Thus available P as $P_2O_5$(AVP) and P sorption (PS) were most important factors in determining the concentration of 0.01M $CaC1_2-P$($CaC1_2-P$). In multinomial equation related $CaC1_2-P$ with AVP and PS, the determination coefficient was improved to 0.745. The logarithm of $CaC1_2-P$ was linearly related to AVP/PS. Consequently, the equation, $0.01M\;CaCl_2-P=0.1284e^{0.3288AVP/PS}$ could be suggested to estimate the concentration of P in 20mL of 0.01M $CaCl_2$ solution containing 2g of soil shaken for 17 hours.

  • PDF

The Effect of Long-term Application of different Organic Material Sources on Soil Physical Property and Microflora of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 물리성 및 미생물상 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Sang-Bok;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.365-372
    • /
    • 2001
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil physical properties and microorganism in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC). cow manure compost(CMC). human excrement sludge(HES), and food industrial sludge compost(FISE) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : Bulk density of loam soil decreased with compost application to $1.07{\sim}1.32Mg\;m^{-3}$ compared with $1.49Mg\;m^{-3}$ of control plot, while in sandy loam soil it decreased to $1.00{\sim}1.20Mg\;m^{-3}$ compared with $1.25Mg\;m^{-3}$ of control plot. Bulk density of soil was decreased according to maize cultivation compared with bare control, but soybean cultivation was similar. Population of organic material decomposing microorganisms was increased rapidly at the initial incubation stage at $25^{\circ}C$, and increased more sensitively at the loam soil than sandy loam soil. In the case of the change of microorganisms associated with nitrogen circulation, ammonia oxidizing bacteria was more at the initial incubation stage, and denitrifying bacteria was more at the initial incubation stage, and denitrifying bacteria increased until 1~4 weeks after incubation and increased more at the loam soil than sandy loam soil.

  • PDF

Soil-to-Plant Transfer Factors of $^{99}Tc$ for Korean Major Upland Crops (우리나라 주요 밭작물에 대한 $^{99}Tc$의 토양-작물체 전이계수)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Keum, Dong-Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.209-215
    • /
    • 2011
  • In order to investigate the soil-to-plant transfer factor (TF) of $^{99}Tc$ for Korean major upland crops (soybean, radish and Chinese cabbage), pot experiments were performed in a greenhouse. Soils were collected from four upland fields (two for soybean and two for radish and Chinese cabbage) around Gyeongju radioactive-waste disposal site. Three to four weeks before sowing, dried soils were mixed with a $^{99}Tc$ solution and the mixtures were put into pots and irrigated. TF values were expressed as the ratios of the $^{99}Tc$ concentrations in plants (Bq $kg^{-1}$-dry or fresh) to those in soils (Bq $kg^{-1}$-dry). There was no great difference in the TF value between soils. The TF values for soybean seeds were extremely lower than those for the straws, indicating a very low mobility of $^{99}Tc$ to seeds. As representative TF values of $^{99}Tc$, $1.8{\times}10^{-1}$, $1.2{\times}10^1$, $3.2{\times}10^2$ and $1.3{\times}10^2$ (for dry plants), arithmetic means for two soils, were proposed for soybean seeds, radish roots, radish leaves and Chinese cabbage leaves, respectively. In the case of the vegetables, proposals for fresh plants were also made. The proposed values are not sufficiently representative so successive updates are needed.