• Title/Summary/Keyword: 방향 파워 스펙트럼

Search Result 23, Processing Time 0.03 seconds

Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates (다공판을 이용한 고압 가스 배관 내 밸브 유동 소음 저감에 대한 수치적 고찰)

  • Kim, Gyunam;Ku, Garam;Cheong, Cheolung;Kang, Woong;Kim, Kuksu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • In this study, a numerical methodology is proposed for evaluating valve flow noise in a pipe conveying high pressure gas, and the effects of perforated plates on reduction of such valve flow noise are quantitatively analyzed. First, high-accurate unsteady compressible Large Eddy Simulation techniques are utilized to predict flow and flow noise by a valve in a high-pressure pipe. The validity of the numerical result is confirmed by comparing the predicted wall pressure spectrum with the measured one. Next, the acoustic power of downstream-propagating acoustic waves due to the valve flow is analyzed using an acoustic power formula for acoustic waves propagating on mean flow in a pipe. Based on the analysis results, perforated plates are designed and installed downstream of the valve to suppress the valve flow noise and the acoustic power of downstream-going acoustic waves is predicted by using the same numerical procedure. The reduction by 9.5 dB is confirmed by comparing the predicted result with that of the existing system. Based on these results, the current numerical methodology is expected to be used to reduce valve flow noise in an existing system as well as in a design stage.

A Musical Genre Classification Method Based on the Octave-Band Order Statistics (옥타브밴드 순서 통계량에 기반한 음악 장르 분류)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.81-86
    • /
    • 2014
  • This paper presents a study on the effectiveness of using the spectral and the temporal octave-band order statistics for musical genre classification. In order to represent the relative disposition of the harmonic and non-harmonic components, we utilize the octave-band order statistics of power spectral distribution. Experiments on the widely used two music datasets were performed; the results show that the octave-band order statistics improve genre classification accuracy by 2.61 % for one dataset and 8.9 % for another dataset compared with the mel-frequency cepstral coefficients and the octave-band spectral contrast. Experimental results show that the octave-band order statistics are promising for musical genre classification.

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.

Investigation on relative contribution of flow noise sources of ship propulsion system (선박 추진시스템 유동 소음원 상대적 기여도 분석)

  • Ha, Junbeom;Ku, Garam;Cheong, Cheolung;Seol, Hanshin;Jeong, Hongseok;Jung, Minseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.268-277
    • /
    • 2022
  • In this study, each component of flow noise source of underwater propeller installed to the scale model of the KVLCC2 is investigated and the effect of each noise source on underwater-radiated noise is quantitatively analyzed. The computation domain is set to be the same as the test section of the large cavitation tunnel in the Korea Research Institute of Ship and Ocean Engineering. First, for the high-resolution computation of flow field which is noise source region, the incompressible multiphase Delayed Detached Eddy Simulation is performed. Based on flow simulation results, the Ffowcs Williams and Hawkings integral equation is used to predict underwater-radiated noise and its validity is confirmed through the comparison with the tunnel experiment result. For the quantitative comparison on the contribution of each noise source, the spectral levels of sound pressure and power levels predicted using propeller tip-vortex cavitation, blade surface and rudder surface as the integral region of noise sources are investigated. It is confirmed that the cavitation which is monopole noise source significantly contributed to the underwater-radiated noise than propeller blades and rudder which is dipole noise source, and the rudder have more contribution than propeller blades due to the influence of the propeller wake.

Opportunistic Spectrum Access Using Optimal Control Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적화 제어 정책을 이용한 선택적 스펙트럼 접근)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.6-10
    • /
    • 2015
  • RF energy harvesting technology is a promising technology for generating the electrical power from ambient RF signal to operate low-power consumption devices(eg. sensor) in wireless communication networks. This paper, motivated by this and building upon existing CR(Cognitive Radio) network model, proposes a optimal control policy for RF energy harvesting CR networks model where secondary users that have low power consumption harvest ambient RF energy from transmission by nearby active primary users, while periodically sensing and opportunistically accessing the licensed spectrum to the primary user's network. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

Empirical Prediction of Acoustic Load of Launch Vehicle Including Jet Impingement (충돌제트 현상을 고려한 발사체 음향하중의 경험적 예측)

  • Park, Seoryong;Lee, Kyuho;Kong, Byunghak;Kang, Kyung Tai;Jang, Seokjong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-162
    • /
    • 2014
  • Empirical prediction method of the acoustic load on the fairing is based on jet experimental data on the basis of similarity principle. Representative empirical prediction method, DSM-II(Distributed Source Method-II), is a distributing source method along the jet plume. But the empirical prediction model is limited to reflect the impingement source in real environment because it is based on the free jet data. So, we propose a empirical prediction method considering the impinging jet effect by adding a impingement source in the existing prediction method. Considering the additional source's displacement, spectrum, strength and directivity, we calculate the acoustic load on the KSR-III(Korean Sounding Rocket-III) rocket and compare the results with the existing method and experiment data.

Plasma-assisted nitrogen doping on CVD-graphenes

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.278.2-278.2
    • /
    • 2013
  • 그래핀은 우수한 전기적, 기계적, 광학적 특성들로 인하여 전자소자, 센서, 에너지 재료 등으로의 응용이 가능하다고 알려진 단 원자층의 탄소나노재료이다. 특히 그래핀을 전자소자로 응용하기 위해서는 캐리어 농도, 전하 이동도, 밴드갭 등의 전기적 특성을 향상시키거나 제어하는 것이 요구되며, 에너지 소재로의 응용을 위해서는 높은 전기전도도와 함께 기능화를 통한 촉매작용을 부여하여 효율을 향상시키는 것이 요구된다. 일반적으로 화학적 도핑은 그래핀의 전기적 특성을 제어하는 효율적인 방법으로 알려져 있다. 화학적 도핑의 방법으로 질소, 수소, 산소 등 다양한 이종원소를 열처리 또는 플라즈마 처리함으로써 그래핀을 구성하는 탄소원자를 이종원자로 치환하거나 흡착시켜 기능화 처리된 그래핀을 얻는 방법들이 제시되었다. 이중 플라즈마를 이용한 도핑방법은 저온에서 처리가 가능하고, 처리시간, 공정압력, 인가전압 등 플라즈마 변수를 변경하여 도핑정도를 비교적 수월하게 제어할 수 있다는 장점을 가지고 있다. 본 연구에서는 열화학기상증착법으로 합성된 그래핀을 직류 플라즈마로 처리함으로써 효율적인질소도핑 조건을 도출하고자 하였다. 그래핀의 합성은 200 nm 두께의 니켈 박막이 증착된 몰리브덴 호일을 사용하였으며, 원료가스로는 메탄을 사용하였다. 그래핀의 질소 도핑은 평행 평판형 직류 플라즈마 장치를 이용하여 암모니아($NH_3$) 플라즈마로 처리하였으며, 플라즈마 파워와 처리시간을 변수로 최적의 도핑조건 도출 및 도핑 정도를 제어하였다. 그래핀의 질소 도핑 정도는 라만 스펙트럼의 G밴드의 위치와 반치폭(Full width at half maximum; FWHM)의 변화를 통해 확인하였다. NH3 플라즈마 처리 후 G밴드의 위치가 장파장 방향으로 이동하며, 반치폭은 감소하는 것을 통해 그래핀의 질소도핑을 확인하였다.

  • PDF

A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates (분자동역학 시뮬레이션을 이용한 이팔면체 점토광물 수산기 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.209-220
    • /
    • 2016
  • Clay minerals are a major player to determine geochemical cycles of trace metals and carbon in the critical zone which covers the atmosphere down to groundwater aquifers. Molecular dynamics (MD) simulations can examine the Earth materials at an atomic level and, therefore, provide detailed fundamental-level insights related to physicochemical properties of clay minerals. In the current study, we have applied classical MD simulations with clayFF force field to dioctahedral clay minerals (i.e., gibbsite, kaolinite, and pyrophyllite) to analyze and compare structural parameters (lattice parameter, atomic pair distance) with experiments. We further calculated vibrational power spectra for the hydroxyls of the minerals by using the MD simulations results. The MD simulations predicted lattice parameters and interatomic distances respectively deviated less than 0.1~3.7% and 5% from the experimental results. The stretching vibrational wavenumber of the hydroxyl groups were calculated $200-300cm^{-1}$ higher than experiment. However, the trends in the frequencies among different surface hydroxyl groups of each mineral was consistent with experimental results. The angle formed by the surface hydroxyl group with the (001) plane and hydrogen bond distances of the surface hydroxyls were consistent with experimental result trends. The inner hydroxyls, however, showed results somewhat deviated from reported data in the literature. These results indicate that molecular dynamics simulations with clayFF can be a useful method in elucidating the roles of surface hydroxyl groups in the adsorption of metal ions to clay minerals.

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.