감시카메라의 성능이 향상됨에 따라 감시 카메라를 적용한 다양한 분야에 자동탐지 시스템의 적용 사례가 증가하고 있다. 하지만 동적인 상황이 빈번히 발생하는 실외환경에서의 감시카메라는 빛이나 날씨 등에 의해 불확실성을 일으킬 수 있다. 본 논문에서는 발생한 불확실성을 시계열로 보정하기 위한 방법으로 동적 베이지만 네트워크 기반의 시스템을 제안한다. 객체의 속도와 레이블, 방향 등을 시계열로 고려해 발생한 불확실한 상황에 대해 객체 검출을 보정하였다. 또한 실제 비디오 영상을 이용한 실험 및 평가를 수행하여 그 유용성을 입증하였다.
음악에서 동기는 독립성을 지니는 최소 단위이며, 저작권 검사의 단위로 이용된다 따라서, 한 음악에서 약간의 변화를 가지고 반복되는 주제선율을 추출하거나, 다른 음악간의 유사도를 측정하는데 유사도 계산은 필요하다. 본 논문에서는 비교되는 동기의 선율정보를 음 길이와 음높이가 함께 고려되는 시계열 데이타로 변환하고, cosine measure를 이용하여 동기간의 유사도를 계산한다. 시계열 데이타에서 유사도 계산으로 사용되는 유클리드 거리함수 대신 cosine measure를 이용한 경우, 공간상의 거리 합대신 변화 방향이 반영됨으로써 비교되는 동기간의 유사도를 정확하게 계산한다. 본 논문에서 제안된 동기간의 유사도 계산은 내용 기반 음악 검색에서 색인으로 사용되는 주제선율을 추출하거나, 다른 음악의 동기간의 유사성을 비교하는데 이용될 수 있다.
Multitemporal MODIS 식생 지수 (VI) 자료는 식생 활동의 프로파일을 제공하기 때문에 환경 및 기후 변화에 대한 식생 모니터링 연구에 널리 사용되고 있다. 그러나 MODIS 데이터에는 구름이나 대기 변동성 및 계측기 문제로 인해 노이즈가 발생하여 NDVI 시계열 데이터 분석과 애플리케이션 응용에 있어서 자료 정확성에 문제가 생기게 된다. 이러한 이유로, NDVI 자료를 이용한 VI 분석을 위해서는 잡음을 줄이고 고품질의 시계열 데이터 스트림을 재구성하기위한 전 처리가 필요하다. 본 연구에서는 NDVI 시계열 자료의 통계적 특성을 기반으로 불량 데이터 또는 미관측 데이터를 복원하기 위해 MODIS NDVI에 대한 데이터 재구성 방법을 제안하고 있다. 데이터 스트림 함수의 속성을 검사하면 급격한 증가나 감소와 같은 비정상적인 변화를 감지 할 수 있다. 본 연구에 제안하고 있는 방법은 정상적인 자료의 세부적 특징은 그대로 유지하면서 노이즈 자료만 수정하는 방향으로 자료를 복원할 수 있다. 제안된 기법은 시뮬레이션 데이터와 2006년부터 2012년까지의 북한지역 백두산을 대상으로 NDVI 시계열 자료를 사용하여 테스트하였고 시뮬레이션 테스트에서는 기존 wavelet이나 Gaussian 방법에 비해 본 방법이 에러율을 평균 70% 이상 줄일 수 있어 제안된 방법이 노이스가 있는 시계열 자료의 데이터 재구성에 있어 효과적임을 입증하였다.
본 논문에서는 소형어선의 운동 응답을 예측하기 위해 딥러닝 모델을 구축하였다. 크기가 다른 두 소형어선을 대상으로 유체동역학 성능을 평가하여 데이터세트를 확보하였다. 딥러닝 모델은 순환 신경망 기법의 하나인 장단기 메모리 기법(LSTM, Long Short-Term Memory)을 사용하였다. 딥러닝 모델의 입력 데이터는 6 자유도 운동 및 파고의 시계열 데이터를 사용하였으며, 출력 라벨로는 6 자유도 운동의 시계열 데이터로 선정하였다. 최적 LSTM 모델 구축을 위해 hyperparameter 및 입력창 길이의 영향을 평가하였다. 구축된 LSTM 모델을 통해 입사파 방향에 따른 시계열 운동 응답을 예측하였다. 예측된 시계열 운동 응답은 해석 결과와 전반적으로 잘 일치함을 확인할 수 있었다. 시계열의 길이가 길어짐에 따라서 예측값과 해석 결과의 차이가 발생하는데, 이는 장기 데이터에 따른 훈련 영향도가 감소 됨에 따라 나타난 것으로 확인할 수 있다. 전체 예측 데이터의 오차는 약 85% 이상의 데이터가 10% 이내의 오차를 보였으며, 소형어선의 시계열 운동 응답을 잘 예측함을 확인하였다. 구축된 LSTM 모델은 소형어선의 모니터링 및 경보 시스템에 활용될 수 있을 것으로 기대한다.
자의적으로 구성한 기록 콘텐츠만으로는 이용자가 필요한 기간과 맥락에 대한 이해 없이 이용하게 됨으로써 주요한 경제정책기록에 효율적으로 접근하기에 어려움을 겪는다. 이러한 현재의 기록 서비스를 개선하기 위한 방안을 모색하고자 한다. 본 연구에서 1991년부터 2021년까지 30년간의 경제정책방향을 대상으로 경제정책기록에 텍스트 마이닝 기법을 활용하여 정부별 주요하게 다뤄진 경제 키워드와 변화과정을 도출하였다. 대책 배경, 주요 내용, 본문 텍스트를 수집하여 전처리를 진행한 후 텍스트 빈도분석, TF-IDF, 네트워크분석, 시계열 분석을 진행하였다. 분석 결과 '일자리', '경쟁력', '구조조정' 순으로 가장 높은 빈도수를 기록하였다. 정부별로 주요 키워드를 한눈에 볼 수 있었으며 '일자리', '부동산', '기업'의 연도별 상대비율을 시계열 순으로 분석하였다. 본 연구 결과를 바탕으로 향후 경제정책기록서비스의 발전과 저변확대를 위한 시사점을 제언하였다.
농업에서의 무인기는 촬영 영역은 작지만, 위성이 가지지 못하는 초고해상도의 영상 수집이 가능하며, 작물의 생물계절에 맞는 영상을 적시에 획득 할 수 있어 들녘단위 농경지의 모니터링에 유용하게 사용될 수 있다. 하지만 무인기의 경우 위성과 달리 다양한 카메라와 촬영 환경에 따른 다중시기 영상을 활용하기 때문에 시계열 영상 활용을 위해서는 정규화 된 영상자료를 활용하는 것이 필수적으로 요구된다. 본 연구는 무인기 다중분광 영상의 농업 모니터링 시계열 활용을 위해 촬영 환경에 따른 무인기 반사율 및 식생지수의 변동성을 분석하였다. 촬영 고도, 촬영 방향, 촬영시간, 운량과 같은 환경요인에 따른 반사율 변동성은 8%에서 11%로 매우 크게 나타났으나, 식생지수의 변동성은 1% ~ 5%로 안정적인 것을 확인 할 수 있었다. 이러한 현상은 무인기 다중분광센서의 특성과 후처리 프로그램의 정규화 등 다양한 원인이 존재하는 것으로 판단된다. 따라서 무인기 영상의 시계열 활용을 위해서는 식생지수와 같은 밴드비율함수를 활용하는 것이 권장되며 촬영 시 가능한 동일한 촬영시간, 촬영 고도, 촬영 방향을 설정하여 시계열 영상의 변동성을 최소화하는 것이 권장된다.
본 연구의 목적은 지금까지 한국 정부가 벤처캐피탈 시장에 어떻게 개입해 왔는지 살펴보고, 정부의 벤처캐피탈 정책이 벤처캐피탈의 초기 투자를 촉진했는지 실증적으로 규명하는 것이다. 이를 위해 본 연구에서는 관련 문헌을 연구하고 국내 사례를 적용 분석하여 벤처캐피탈 시장에 대한 정부의 시장개입을 단계적으로 분류하였다. 그리고 본 연구는 정부개입의 가장 중요한 목적인 벤처캐피탈의 초기투자 활성화를 위한 우리 정부의 정책 효과를 실증적으로 분석하였다. 실증분석을 위해 한국벤처캐피탈협회와 한국펀드에서 제공한 2004년부터 2018년까지의 연도별 자료를 시계열 통계분석과 거시역학을 이용하여 분석하였다. 사례연구 결과 한국 정부는 25년 동안 직접투자를 통해 벤처캐피탈 시장에 개입했고, 이후 18년 동안 간접투자를 통해 개입해왔다. 시계열 통계분석 결과, 벤처캐피탈펀드 조성을 늘리기 위한 정부의 재정투자와 일정비율의 초기투자를 의무화하는 특수목적펀드의 비율이 높아지면서 벤처캐피털의 초기투자가 증가했다. 그러나 거시역학은 2016년부터 이 시계열 통계분석과 반대 방향의 경향을 보였다. 결론적으로, 본 연구는 시계열 통계분석 결과와 반대 방향의 경향을 정부의 벤처캐피탈 투자방법에 대한 잘못된 규제로 해석하고, 최근 정부의 간접투자 방식을 통한 직접개입의 실효성이 부족하다. 또한 본 연구에서는 사례연구와 실증연구 결과를 바탕으로 정부의 간접개입에 필요한 여섯 가지 정책제안을 제시하였다.
본 논문에서는 주가예측의 정확도를 향상시키기 위하여 공적분 검정(Cointegration Tests)과 인공 신경망(Artificial Neural Networks)을 사용한 2단계 하이브리드 예측 모델을 제시한다. 기존의 연구에서는 예측을 시도하고자 하는 종목의 일자별 개별 레코드를 인공 신경망과 같은 방법으로 학습함으로써 주식 데이터가 가지는 시계열적 특성을 충분히 반영하지 못하였는데, 새로 제안한 모형에서는 주식자료의 과거시차들의 값들도 인공 신경망의 속성(feature)으로 사용하여 기존 연구의 한계를 보완하였다. 또한, 예측대상종목의 정보들 외에도 장기적으로 높은 시계열 유사성을 보유한 종목들을 선발한 후 속성으로 사용하여 모형의 예측성능을 향상 시켰다. 구체적으로 1단계는 Johansen의 공적분 검정을 통하여 예측대상종목과 장기적 관계(long-term relationship)에 있는 종목을 추출하고, 2단계는 이 선발된 종목들과 예측대상종목의 시계열 정보 특성을 속성으로 구축한 인공 신경망으로 학습하여 관심 종목을 예측한다. 제안된 모델의 성능을 확인하기 위하여 KOSPI 지수의 방향성을 예측하는 시스템을 구현하였으며, 시가총액 상위 종목군을 대상으로 지수와의 공적분 검정을 하였다. 성능을 살펴보기 위하여 본 연구에서는 시계열 정보가 속성으로 반영된 단순 인공 신경망 모델, 공적분 검정을 통과한 종목들의 시계열 속성이 포함된 모델, 그리고 그 모델과 속성의 개수를 동일하게 하기 위하여 임의로 종목을 선택하여 이들의 시계열 속성이 포함된 모델을 구축하였다. 실험 결과 공적분 검정을 통과한 종목군의 속성이 결합된 모델은 단순 인공 신경망만으로 학습된 기존 모델에 비하여 평균적으로는 11.29% (최대 29.98%) 정확도가 향상되었고, 임의로 선택된 종목군의 속성이 결합된 모델에 비해서는 평균적으로는 10.59% (최대 25.78%) 가 향상된 예측 정확도를 보여주었다.
본 연구는 안면도 바람아래 해빈의 형태와 퇴적 및 침식환경 변화를 시계열 분석하였다. 1967년부터 2009년까지의 항공사진을 이용하여 바람아래 해빈 형태를 시계열 분석한 결과, 할미섬 남단에 발달한 사취의 방향성이 EEN의 방향성을 가지고 있었지만, 점차 서진하면서 2009년 항공사진에서는 NNS의 방향성을 가진 것으로 나타났다. 현장실측 결과 H-3, H-4, H-5, H-6 지점은 퇴적환경이 우세한 것으로 나타났으며, H-7, H-8, H-9 지점은 침식환경이 우세한 것으로 나타났다. 즉 할미섬의 남서변은 퇴적이 우세하고 북동변은 침식이 우세한 것으로 분석되었다. H-3 ~ H-6 지점의 결과는 할미섬의 남서변에 설치된 제방에 의해 해빈의 모래가 할미섬의 북동변으로 이동하지 못하고 이들 지점에 퇴적되었기 때문인 것으로 판단되며, 역설적으로 할미섬의 남서변에서 모래를 공급받지 못한 북동변의 H-7 ~ H-9 지점은 침식이 우세하게 진행 된 것으로 판단된다. 계절별 분석결과, 전 지점에서 퇴적이 우세한 계절은 가을철이며 침식이 우세한 계절은 봄철인 것으로 나타났다. 그러나 할미섬을 남서측과 북서측으로 구분해 보면 남서측은 주로 가을철에 퇴적이 우세한 반면, 북서측은 여름철에 우세한 것으로 나타났다. 침식은 남서측은 겨울철과 봄철에 우세하고, 북서측은 여름철에 우세한 것으로 나타났다.
본 연구에서는 다년간 계속되어 온 공기업의 개혁 성과에 대해 경영효율성 관점에서 살펴보고자 한다. 공기업을 포함한 공공기관의 개혁 움직임은 부채 수준의 급증 문제에서 시작되었으며, 방만 경영으로 대표되는 비효율적인 경영방침이 지속된다면 미래 정부에 큰 부담으로 작용할 것으로 우려되었기 때문이다. 공공기관의 효율적 경영은 자료포락분석에 의한 DEA로 측정하능하며, 본 연구에서는 DEA의 시계열적 변화를 살펴봄으로써 공공기관이 개혁과정이 성공적이라 평가할 수 있는지 점검해보고자 하였다. 또한, 매년 발표되는 경영평가결과를 바탕으로 우수 공공기관과 그렇지 않은 공공기관에서 이러한 시계열적 추세에 차이가 존재하는지를 살펴보아 향후의 공공기관 개혁에 방향성을 제시할 수 있는 보다 명확한 분석결과를 제시하고자 한다. 본 연구의 결과는 공공기관의 성공적인 개선을 이루기 위한 중간점검 차원에서 이해될 수 있으며, 비효율성을 개선하기 위해 어떠한 기관이 더욱 노력해야 하는지에 대한 답을 제공할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.