• Title/Summary/Keyword: 방향탐지안테나

Search Result 64, Processing Time 0.023 seconds

Design of a Spinning Direction-Finding Compact Offset-Parabolic-Reflector Antenna for Airborne Applications (항공용 회전 방향탐지 소형 옵셋 파라볼릭 반사판 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.766-773
    • /
    • 2016
  • This paper proposes an aircraft-installed compact offset-parabolic-reflector antenna for the spinning direction-finding applications. The feeder of the reflector antenna is a LPDA antenna that has the ultra-wideband characteristics and the $45^{\circ}$ slant linear polarization. The reflector is designed to be slanted by $5^{\circ}$ in the elevation and to be small in size on the basis of the reference parabolic shape for the purpose of the high gain and mounting on the underside of aircraft fuselage. Over the ultra-wideband 20:1 bandwidth from S to Ka band, the measured average gain of the proposed antenna is 27.97 dBi, and the average half-power beam width is $4.55^{\circ}$ in the azimuth and $4.3^{\circ}$ in the elevation which is the pencil-beam radiation pattern. All the measured data are similar to the simulation results. The designed compact offset-parabolic-reflector antenna that is installed in the limited area has the ultra-wideband and high-gain characteristics. We expect that the newly designed antenna can be applied to the spinning direction-finding antenna system installed in an aircraft.

A Study on DOA Estimation Using Dipole Array Antenna Based on MoM (MoM 기법에 의한 다이폴 배열 안테나의 신호 방향 추정 방법 연구)

  • Moon, Sang-Kon;Lee, Kang-In;Yang, Hoon-Gee;Bae, Kyung-Bin;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.661-668
    • /
    • 2011
  • Direction estimation of signal of interest has been an important issue in radar and communication system. Generally, DOA(Direction Of Arrival) methods have been researched in the field of signal processing with ideal array sensors. However, there are some problems in array antennas such as the input signal distortions in amplitude and phase, due to the mutual coupling between array elements. In this paper, we propose a new method of DOA estimation in the dipole array antenna by using the method of moment(MoM) to compensate the mutual coupling effects between array antenna elements. Also, the proposed method is applied to the estimation of azimuth(${\phi}$ ) and elevation(${\theta}$) angles using uniformly linear dipole array under noisy environments.

Analysis of Neighbor Discovery Process with Directional Antenna for IEEE 802.15.3c (IEEE 802.15.3c 기반에서 지향성 안테나를 사용했을 때의 이웃장치 탐지과정 분석)

  • Kim, Mee-Joung;Lee, Woo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.9-14
    • /
    • 2012
  • The neighbor discovery using directional antennas in mmWave band is a prerequisite for communications and this issue is crucial and urgent. In this paper, the synchronized, direct, two-way directional neighbor discovery process is analyzed mathematically for mmWave WPANs. The analysis is based on the values which are derived from the effect of using directional antennas. The neighbor discovery probability for a given amount of time is considered and several performance measures such as the optimal sojourn time are derived in closed forms. Numerical results are obtained using parameters based on the IEEE 802.15.3c. The mathematical analysis provides the theoretical basis for the directional neighbor discovery process.

Implementation of Real-Time Direction Finding System Using Time-Modulated Array with Two Antenna Elements and One USRP (2개의 안테나 소자를 갖는 Time-Modulated Array와 하나의 USRP를 이용한 실시간 방향탐지 시스템의 구현)

  • Lee, Sangjoon;Yoon, Hyungoo;Choo, Hosung;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.347-350
    • /
    • 2017
  • In this paper, we implemented a real-time 2.4 GHz direction finding system using a time-modulated array(TMA) and an Universal Software Radio Peripheral(USRP). Our system consists of two commercial monopole antennas, self-designed switch board, and an USRP, and it is controlled using LabVIEW program in real-time. From measured results, it is verified that our system can exactly detect the incident angle within 4 degree in the range of 30 degree. Our direction finding system has advantages of a simple hardware architecture than conventional one with multiple receivers, and a simple algorithm only by using a main lobe and a first side-lobe of switching frequency.

Azimuth Accuracy of Correlative Interferometer Direction Finder on Airborne Scale-down Model (항공기 축소모델의 상관형 위상비교 방향탐지장치의 방위각 정확도)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.1-6
    • /
    • 2018
  • This paper describes the azimuth accuracy of correlative interferometer direction finder on a scaled down airplane model. When the antennas are placed on the bottom of an airplane, reflection signals caused by an aircraft structure are arise and caused an azimuth error. In this paper, the F-16 fighter scale-down model was made to 5:1, and five antennas were placed on the bottom of the model. The accuracy was made by numerically analyzing the phases of the radio waves received by the five antennas when the signal of emitter was transmitted on $0-360^{\circ}$ azimuth angles. The azimuth error of the correlative interferometer direction finder on the model was measured to be less than $1.0^{\circ}$ when SNR was larger then 3dB, and it could be very useful for the design of the direction finder on airplane.

The Performance Analysis of Burst Error Elimination CVDF Algorithm Using Switching Remote Direction Finding Antenna in VHF (VHF대역에서 원격운용 방향탐지안테나 소자의 스위칭에 의한 상관벡터방향탐지 버스트에러 제거 알고리즘 성능분석)

  • Won, Jong-Mook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.129-138
    • /
    • 2007
  • Recently, Direction Finding(DF) System is using switching DF algorithm to reduce system-weight by eliminating RF cable as much as possible. Also, Correlation Vector Direction Finding(CVDF) algorithms is being used for Fast Direction finding in tactical environment. In this paper, I will give you burst error elimination algorithms and compare the performance in case we use switching CVDF algorithm. Although antenna array is not working, we will successfully perform direction finding when we use this burst error elimination algorithms. Also, we will be completely capable of DF mission despite of meeting the unwanted situation that the monitoring signal disappear in case we use Switching Direction Finding algorithms. That situation frequently occurs under the Frequency Hopping signal circumstances.

The Radiation Compensation Method for Two Dimensional Direction Finding of GPS Signal and Experiment Method (광대역 GPS신호의 2차원 방향탐지를 위한 방사보정 기법 및 시험 방안)

  • Ju, Hyung-Jun;Park, Seul-Gi;Kim, Dong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • In this paper, we present a radiation compensation method and experiment method for two-dimensional direction finding by elevation and azimuth angles of broadband GPS signal, and then produce experimental results. Previous studies have performed direction finding by only using the azimuth angle of the detected signal. So, the compensation table utilizes compensation data by azimuth angles only. However, the presented method in this study has compensation data by azimuth and elevation angles for two-dimensional direction finding. Because of direction finding systems and applications are diversified, recently. So, we present a two-dimensional radiation compensation method. For evaluation of the presented compensation method, we calculate the ideal phase differences on the antenna for two-dimensional direction finding and simulate phase differences using a FEKO EM simulator. Subsequently, we analyze experimental data by radiation compensation experiments using the presented compensation method in an anechoic chamber.

Design of Small Antennas for Direction Finding Applications (방향 탐지용 소형 안테나 설계)

  • Cho, Chi-Hyun;Oh, Seung-Sub;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.913-921
    • /
    • 2007
  • In this paper, we propose a novel small antenna for direction finding applications. The proposed antenna employs a skirt type disk to eliminate the radiation null on the broad-side direction in the high frequency range. Additionally, the multi-section matching stub is used for impedance matching in the low frequency range, The size of the proposed antenna is reduced as a half of the 60cm dipole which has a same resonance frequency of 200MHz. The antenna maintains a donut shape radiation pattern with a broad beam width for a wide range of frequency while the 60cm dipole shows radiation nulls on the broad-side direction and the high side-lobe level from 700MHz to 1,300MHz.

Mutual Coupling Compensation and Direction Finding for Anti-Jamming 3D GPS Antenna Array (항재밍 3차원 GPS 배열 안테나를 위한 Mutual coupling 보상 및 재밍 방향탐지 알고리즘)

  • Kang, Kyusic;Sin, Cheonsig;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.723-730
    • /
    • 2017
  • In this paper, we consider an online compensation algorithm considering the mutual coupling and suggest a new GPS antenna array to apply. To evaluate the anti-jamming performance for the proposed antenna array, ULA and URA, we divide direction finding of multiple jamming signals into environments. 1. there is no mutual coupling. 2. there is mutual coupling but no compensation. 3. mutual coupling is compensated. RMSE analysis showed that the online compensation algorithm works and that peak detection is possible for multiple jamming signals.

Performance Analysis of Direction Finding Systems Using EM Simulation-based Array Manifolds (EM 시뮬레이션 기반의 어레이 매니폴드를 이용한 방향 탐지 시스템 성능 분석)

  • Kim, Jae-Hwan;Cho, Chihyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1166-1172
    • /
    • 2012
  • In this paper, by using a commercial EM simulator, we could obtain the array manifold which are phase responses of an array antenna for the incident plane wave and then verified the effectiveness of methodology after comparing with the measurement. The result shows that the array manifold can be calculated including not only the phase response of the ideal point sources but also the influences of the mutual coupling between antennas and the installed platform. Also it can exclude the interference of strong broadcasting signal and the disturbance of the multipath in the calibration process. Finally, to predict the performances of direction finding systems, a novel method using both the EM simulation-based receiving signal and the sparsely sampled array manifold with the parabolic estimation is proposed. This method can be utilized in the various fields of direction-finding since it shows the superior predictive performance even in low SNR conditions.