• 제목/요약/키워드: 방향성 필터

Search Result 267, Processing Time 0.021 seconds

Astronomical Observation Environment Study focusing on Night Sky Brightness Variation under Light Pollution (광해에 따른 밤하늘의 밝기 변화를 중심으로 본 천문 관측 환경)

  • Lee, Jin-Hee;Choe, Seung-Urn;Jung, Jae-Hoon;Woo, Hong-Gyun
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.344-353
    • /
    • 2009
  • By measuring the brightness of night sky, we have investigated light pollution around the observatory in the College of Education, Seoul National University. As a result of measuring the extinction coefficient and photometric constants by standardization, in January 28, 2009, the extinction coefficient found to be $k_B$=0.359 and photometric constant was $C_B$=4.397. In March 27, 2009, extinction coefficients were $k_B$=0.896 and $k_V$=0.725, and photometric constants were $C_B$=6.235 and $C_V$=6.027. Brightness of the night sky was measured from east, west, south, and north each by altitude of $20^{\circ}$, $40^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$. Data reduction and analysis was based on IRAF. Seeings for the each day of observation were 5.1 and 5.7 arcseconds in January 28 and March 27, respectively. Night sky spanned the magnitude range of $16{\leq}m_V$, $m_B{\leq}18$ We found that the brightness of night sky located at downtown was twice to four times brighter. On these observational conditions, limiting magnitude within 40cm-telescope becomes 11-13 magnitudes. Compared with Jan 28 and Mar 27, night sky brightness of January is 1 magnitude fainter than that of March in B filter.

PRODUCT10N OF KSR-III AIRGLOW PHOTOMETERS TO MEASURE MUV AIRGLOWS OF THE UPPER ATMOSPHERE ABOVE THE KOREAN PENINSULAR (한반도 상공의 고층대기 중간 자외선 대기광 측정을 위한 KSR-III 대기광도계 제작)

  • Oh, T.H.;Park, K.C.;Kim, Y.H.;Yi, Y.;Kim, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.305-318
    • /
    • 2002
  • We have constructed two flight models of airglow photometer system (AGP) to be onboard Korea Sounding Rocket-III (KSR-III) for detection of MUV dayglow above the Korean peninsular. The AGP system is designed to detect dayglow emissions of OI 2972${\AA}$, $N_2$ VK(0,6) 2780${\AA}$, $N_2$ 2PG 3150${\AA}$ and background 3070${\AA}$ toward the horizon at altitudes between 100 km and 300 km. The AGP system consists of a photometer body, a baffle an electronic control unit and a battery unit. The MUV dayglow emissions enter through a narrow band interference filter and focusing lens of the photometer, which contains an ultraviolet sensitive photomultiplier tube. The photometer is equipped with an in-flight calibration light source on a circular plane that will rotate at the rocket's apogee. A bane tube is installed at the entry of the photometer in order to block strong scattering lights from the lower atmosphere. We have carried out laboratory measurements of sensitivity and in-flight calibration light source for the AGP flight models. Although absolute sensitivities of the AGP flight models could not be determined in the country, relative sensitivities among channels are well measured so that observation data during rocket flight in the future can be analyzed with confidence.

A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis (병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법)

  • Kim, Young Jae;Kim, Tae Yun;Lee, Seung Hyun;Kim, Kwang Gi;Kim, Jong Hyo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Honeycombs are dense structures that small cysts, which generally have about 2~10 mm in diameter, are surrounded by the wall of fibrosis. When honeycomb is found in the patients, the incidence of acute exacerbation is generally very high. Thus, the observation and quantitative measurement of honeycomb are considered as a significant marker for clinical diagnosis. In this point of view, we propose an automatic segmentation method using morphological image processing and assessment of the degree of clustering techniques. Firstly, image noises were removed by the Gaussian filtering and then a morphological dilation method was applied to segment lung regions. Secondly, honeycomb cyst candidates were detected through the 8-neighborhood pixel exploration, and then non-cyst regions were removed using the region growing method and wall pattern testing. Lastly, final honeycomb regions were segmented through the extraction of dense regions which are consisted of two or more cysts using cluster analysis. The proposed method applied to 80 High resolution computed tomography (HRCT) images and achieved a sensitivity of 89.4% and PPV (Positive Predictive Value) of 72.2%.

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

The Effective Approach for Non-Point Source Management (효과적인 비점오염원관리를 위한 접근 방향)

  • Park, Jae Hong;Ryu, Jichul;Shin, Dong Seok;Lee, Jae Kwan
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • In order to manage non-point sources, the paradigm of the system should be changed so that the management of non-point sources will be systematized from the beginning of the use and development of the land. It is necessary to change the method of national subsidy support and poeration plan for the non-point source management area. In order to increase the effectiveness of the non-point source reduction project, it is necessary to provide a minimum support ratio and to provide additional support according to the performance of the local government. A new system should be established to evaluate the performance of non-point source reduction projects and to monitor the operational effectiveness. It is necessary to establish the related rules that can lead the local government to take responsible administration so that the local governments faithfully carry out the non-point source reduction project and achieve the planned achievement and become the sustainable maintenance. Alternative solutions are needed, such as problems with the use of $100{\mu}m$ filter in automatic sampling and analysis, timely acquisition of water sampling and analysis during rainfall, and effective management of non-point sources network operation management. As an alternative, it is necessary to consider improving the performance of sampling and analysis equipment, and operate the base station. In addition, countermeasures are needed if the amount of pollutant reduction according to the non-point source reduction facility promoted by the national subsidy is required to be used as the development load of the TMDLs. As an alternative, it is possible to consider supporting incentive type of part of the maintenance cost of the non-point source reduction facility depending on the amount of pollutants reduction.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.