본 논문은 차량에 설치된 블랙박스 영상으로부터 도로 노면에 표시된 방향지시 기호를 효율적으로 검출하는 방안을 제안한다. 차량 내부에 설치된 블랙박스 영상은 카메라의 원근 효과로 인해 방향지시 기호 영역을 올바르게 검출하지 못하는 문제점이 존재한다. 따라서 제안한 연구에서는 원근 효과를 가진 입력 영상에서 역원근 변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 맵핑한 평면 영상에서 방향지시 기호 영역을 신경망 검출기를 통해 검출한다. 입력 영상에서 역 원근 변환은 높은 계산량으로 인해 실시간 처리가 어려운 점이 존재한다. 이를 보완하기 위해 제안한 방안에서는 입력 영역의 도로노면 방향지시 기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI 영역의 Gray 색상에서 역원근 변환을 수행한다. 제안한 방안을 도로노면 방향지시 기호 검출 및 인식 연구에 적용한 결과, 약 87% 이상 비교적 정확히 검출율을 제시하였으며, 다양한 도로 환경에서도 높은 검출율을 제시하였다. 따라서 제안한 방안을 운전자의 안전운전지원시스템에 적용함으로써 보다 정확한 도로정보 제공시스템 적용이 가능함을 알 수 있다.
본 논문은 웹카메라를 이용하여 얼굴이 바라보고 있는 방향을 인식하는 시스템을 제안한다. 얼굴 검출 방법으로 Haar-like Face Detect를 이용하여 얼굴을 검출하고 전체 이미지에서 검출된 얼굴 영역만을 관심영역으로 설정하여 Haar-like Eye Detect를 이용하여 눈 영역을 검출하였다. 검출된 눈 위치에 대한 평균값으로 얼굴이 왼쪽 방향을 보고 있는지 오른쪽 방향을 보고 있는지를 판단하였다. 제안된 방법의 실험 결과, 얼굴 및 눈 영역을 비교적 정확하게 검출하였으며 계산된 눈 위치를 이용하여 얼굴 방향 인식에 대해서 우수한 성능을 보였다.
비파괴 검사방법 중 자기누설 방법을 이용한 방법은 높은 자기 투자율을 갖고 있는 배관 검사에 적합하다. 자기누설 방식이 적용된 시스템을 MFL PIG라고 한다. MFL PIG는 금속 손실이나 부식과 같은 결함을 검출하는데 높은 성능을 보인다. 하지만 이 시스템은 축방향으로 자기장을 형성하여 투자율이 큰 금속 배관을 포화시켜 결함이 있는 부분에서 발생하는 누설자속을 검출하는 방식이기 때문에 축방향으로 발생하는 미소 결함은 자기장이 통과하는 단면이 작고 누설자속이 거의 없어 검출이 어렵다. 축방향 미소결함을 검출하기 위해 기존의 MFL PIG를 개선시킨 것이 CMFL PIG이며, 이것은 자기장을 원주방향으로 형성하여 결함에서의 자기 누설을 최대화 가능하다. 본 논문에서는 축방향 미소 결함의 검출이 가능한 CMFL 비파괴 검사 방법에 관한 논의와 이를 이용하여 축방향 결함의 위치이동에 따른 왜곡 신호의 분석 및 보정하는 방법에 관해 제안한다.
본 논문에서는 지문 융선의 방향정보를 검출하는 효과적인 방법을 제안하였다. 제안방법은 먼저 지문영상을 정규화하고 융선이 있는 전경영역과 융선이 없는 배경영역으로 분할하여 문턱값으로 이진영상으로 변환한다. 전경영역은 융선(ridge)과 골(valley)부분으로 구성되는데 융선의 경계를 런길이 부호를 이용하여 체인코드로 표현한다. 지문 융선의 각 화소에서 방향정보를 검출하기 위해서 체인코드로 표현된 융선 경계를 추적하면서 방향정보를 구한다. 그리고 일정한 블록내의 융선방향은 급격하게 변하지 않으므로 블록별로 평활화하여 각 화소의 방향정보를 구한다. 제안방법의 성능평가를 위해 NIST 및 FVC2002 지문데이터베이스를 이용하여 컴퓨터시뮬레이션을 수행하였다. 실험 결과 제안방법을 지문 융선의 방향정보를 효과적으로 검출하는데 이용할 수 있음을 보였다.
엔코더를 사용한 모터의 속도 검출은 저속에서 엔코더의 스텝과 스텝사이의 간격이 넓어서 속도와 회전방향을 정확히 검출하기 어렵다. 따라서 저속에서 좀 더 정확한 속도정보를 얻기위한 여러 가지의 속도추정기술들이 발표되었다. 또한 저속에서는 회전방향의 검출이 속도의 측정만큼이나 중요하다. 그러나 기존의 방향판별회로는 엔코더 펄스 1주기에 1번씩만 방향을 검출하므로 시간지연이 크기때문에 정확한 검출이 힘들다. 따라서 본 논문에서는 각각의 엔코더 펄스의 상승과 하강천이시마다 회전방향을 검출해 엔코더 펄스 1주기에 4번씩 검출할 수 있는 2중천이 검출방식을 제안한다. 그러므로 제안된 회로를 사용하면 기존의 회로보다 검출시간을 1/4로 단축시킬 수 있어 보다 정확한 속도와 회전방향의 검출이 가능하다. 그리고 제안된 회로의 성능과 효과를 시뮬레이션과 실험을 통해 확인하고 기존회로와의 비교를 통해 결과들을 분석한다.
장면 전환 검출(Scene Change Detction)수행 방법으로 객체 인식에 의한 검출이 아닌 전체 영상의 전역적인 형태 흐름을 기반으로 한 검출 시스템을 제안한다. 형태흐름의 변하는 영상의 전체적 모양에 관한 전역적 특징을 이용하여 영상내에 존재하는 에지, 에지의 중심, 표준 편차 및 에너지의 분포 변환에서 추출할 수 있다. 본 논문에서는 효율적인 에지 검출을 위하여 미디언 필터와 개량형 라플라시안 필터를 사용한다. 일반적으로 이용되는 라플라시안 필터를 사용하였을 때 획득할 수 있는 에지 정보보다 우수한 정보를 얻을 수 있었고 보다. 정착한 장면 전환을 검출하기 위해 이 에지 정보를 수평$(0^{\circ})$, 수직$(90^{\circ})$, 대각선$(45^{\circ},\;135^{\circ})$ 방향으로 세분화한 뒤에 프레임간에 각도 방향별 에지 정보를 파악하여 방향별 에지 에너지(Energy of edge)의 상대적인 성분 분포의 비교를 수행함으로써 정확성을 높였다.
에지검출은 영상의 특징 정보를 화소값들의 밝기 변화로 취득하는 기술이며, 여러 영상처리 분야에서 전처리 과정으로 활용되고 있다. 기존의 에지 검출 방법에는 소벨(Sobel), 프리윗(Prewitt), 로버츠(Roberts) 방법 등이 있으며, 이러한 방법들은 영상의 전체 영역에서 동일한 가중치를 적용하여 처리하므로 에지검출 결과가 다소 미흡하다. 따라서 본 논문은 변형된 방향성 마스크를 적용하여 화소들의 방향 및 크기를 고려한 에지검출 알고리즘을 제안하였다.
본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network[1]를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하고 이를 통해 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes[2] 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze[3] 데이터 셋을 이용하였다. 실험을 통해 시선 추정 오차는 0.0396 MSE(Mean Square Error)의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame Per Second)를 나타내었다.
본 논문에서는 열 영상 기반의 전력선 검출을 위한 효과적인 방법을 제안하고자 한다. 제안된 방법에서는 전력선이 가지고 있는 방향 특성을 이용하여 전처리과정을 통해 에지의 방향을 추출하고 이를 기반으로 허프 변환(hough transform)을 이용하여 전력선을 검출한다. 모의실험을 통하여 이러한 전력선 검출 방법 매우 유효한 방법임을 확인할 수 있었다.
본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.