• Title/Summary/Keyword: 방해석 쌍정

Search Result 6, Processing Time 0.029 seconds

Paleostress Inferred from Calcite Twins in the Pungchon Limestone, Joseon Supergroup (조선누층군 풍촌석회암 방해석 쌍정에서 유추된 고응력장)

  • Kang, Seong-Seung;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.13-26
    • /
    • 2022
  • Calcite twins were analyzed in six oriented samples of the Pungchon limestone, Joseon Supergroup, to reconstruct the paleostress field. The orientations of c-axis of calcite and e twin plane were measured along with the average thickness and numbers of twins, and the widths of calcite grains. Twin strain, mean width, and intensity of twinning, and the relative magnitude and orientations of principal stresses were calculated using Calcite Strain Gauge program. Twin strain, mean width, and intensity of twinning showed ranges of 1.09-15.36%, 0.53-3.72 ㎛ and 21.0-53.1 twim/mm, respectively. Metamorphic temperatures calculated from the twins were 170-200℃, indicating that the twins developed after the Pungchon limestone was uplifted to at least half of the maximum burial depth. Results for five of the samples indicate that the calcite twins formed during two events with principal stress axes of different orientations, while the remaining sample recorded only one event that produced calcite twins. The axis of maximum compressive stress was oriented mainly WNW-ESE to ENE-WSW, and to a lesser degree NW-SE and NE-SW. Comparison of paleostress orientations measured here and in other studies indicates that most twins were produced during the Songrim orogeny. However, the Daebo orogeny and the Bulguksa orogeny also produced calcite twins in the Punchon limestone.

Analysis of Calcite Twins as Indicators of Paleostress History (고응력의 지시자로서 방해석 쌍정 분석연구)

  • Park, Young-Seog;Jang, Bo-An;Kim, Cheong-Bin;Kang, Seong-Seung
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.461-471
    • /
    • 2007
  • A temperature of deformation and the state and direction of paleostress at that time when twins in calcite grains had been produced were observed, using analysis of calcite twins as indicators of paleostress history. The study was performed with the target of carbonate rocks distributed randomly small size in the southern area of south Korea. Considering the appearance of twins (thin or thick straight twins with one or two twin sets), average twin strain (1.235-7.453%), thickness ($0.77-1.94{\mu}m$) and intensity (25.26-41.99 twins/mm) from the results of calculated calcite twins, it is estimated that calcite twins were produced under temperatures lower than approximately $150-200^{\circ}C$. In the magnitudes and directions of principal strains, the maximum shortening strain axis ($e_3\leftrightarrow{\sigma}_1$) is approximately N-S direction in the GS-1 area in the southern Gyeongsang Basin as well as in the BS-1 area in the southern Yongnam Massif, whereas E-W direction in the NR-1 area in the southwestern Ogcheon Fold Belt. In case of the maximum extension strain axis ($e_1\leftrightarrow{\sigma}_3$), it is oriented in NW-SE and NE-SW directions in the GS-1 and BS-1 area, respectively, and in N-S direction in the NR-1 area. That is, it is suggested that the paleostress which produced the calcite twins may be applied at least more than two times in the study area.

Paleostress Measurements from Calcite Twin in the Jeongseon Limestone of the Joseon Supergroup (조선 누층군 정선 석회암내의 방해석 쌍정에 나타난 고응력장 연구)

  • 장보안;강성승
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • Eighteen oriented samples from the Jeongsun limestone of the Joseon Supergroup are collected. The orientations of C-axis of calcite and e twin plane, the average thickness, numbers of twins and the widths of calcite grains in 10 samples are measured. Then, the twin strain, mean width, intensity of twin and relative magnitude and orientations of principal stresses are calculated using Calcite Strain Gauge program. Twin strain, mean width and intensitv rainge between 0.801%~10.927%, $0.43{\mu\textrm{m}}~2.03{\mu\textrm{m}}$, and 33.5~113.4twim/mm, respectively. Metamorphic temperatures calculated from twin show below $70^{\circ}C$, indicating that twins were developed within 2.3km depth. In five samples, two events with different orientations of principal stress produced calcite twins, while only one event produced calcite twins in five samples. The direction of the maximum stress is almost horizontal and the minimum is almost vertical, indicating that the stress regirne is identical with thrust fault. E-W and NW-SE are the most dominant directions of comressive stress and N-S and NE-SW directions are also shown. Comparision between paleostress orientations measured in the study and others indicates that the maximum horizontal stress oriented to E-W may represent the paleostress of period either from the Silurian to the Triassic or from the Silulian to the Permian. Paleostress oriented to NW-SE may be the major direction of stress during the Daeho orogeny.

  • PDF

Calcination Characteristics of High-purity Limestone from the Pungchon Limestone in the Quicklime Manufacture (생석회 제조 공정에서의 풍촌층 고품위 석회석의 소성 특성)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.209-224
    • /
    • 2008
  • Various types of high-purity limestone, which occurred in the Pungchon Formation, are examined to understand applied-mineralogical factors controlling their calcination characters with respect to the ore characters. To do this work, systematic characterization and determination were carried out for the limestone ores and their calcination products in a fixed heating condition, and the results were correlated and discussed. During the calcination experiment, a phase transition from calcite to quicklime begins to occur selectively in the physical weak zones such as grain boundary, cleavage and twin planes. All the fabrics of original limestones are preserved in the resultant quicklime. In addition, crystallinity of the quicklime was advanced, as the aging time of calcination was increased. Major controlling factors on the calcination effects of the high-purity limestone are elucidated to be the degree of development of cleavage and twin, together with crystallinity and textures in the limestone ore. Especially, lower crystallinity and dense interlocking fabrics obviously play advantageous role in all the calcination characters. But the development of cleavage and twin affects negatively on the calcination characters on account of favoring decrepitaion of quicklime in the lime manufacturing. Thus, the high-purity limestones characteristic of marble fabrics and relatively lower crystallinity are comparatively advantageous for the uses of lime manufacture.

Diagenetic History of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province, Korea (강원도 정선 지역 오르도비스기 정선석회암의 속성 역사)

  • Bong, Lyon-Sik;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.449-468
    • /
    • 2000
  • The Ordovician Chongson Limestone deposited in the carbonate ramp to the rimmed shelf shows diverse diagenetic features. The marine diagenetic feature appears as isopachous cements surrounding ooids and peloids. Meteoric diagenetic features are recrystallized finely and coarsely crystalline calcite, evaporite casts filled with calcite, and isopachous sparry calcite surrounding ooid grains. Shallow burial diagenetic features include wispy seam, microstylolite, and dissolution seam whereas deep burial features include stylolite, burial cements. blocky calcite with twin lamellae, and poikilotopic calcite. Dolomites consist of very finely to finely crystalline mosaic dolomite formed as supratidal dolomite, disseminated dolomite of diverse origin, patchy dolomite formed from bioturbated mottles, and saddle dolomite of burial origin. Silicified features include calcite-replacing quartz and fracture-filling megaquartz. Burial cements characterized by poikilotopic texture show ${\delta}^{18}$O value of -10.4 %$_o$ PDB, ${\delta}^{13}$C value of -1.0%$_o$ PDB and 504ppm Sr, 3643ppm Fe, and 152ppm Mn concentrations. Finely and coarsely crystalline limestones show similar ${\delta}^{18}$O and ${\delta}^{13}$C value to those of burial cements; however, they show lower Sr and higher Fe and Mn concentrations than burial cements. This suggests that very finely and coarsely crystalline limestones were recrystallized in freshwater and then they were readjusted geochemically in the burial setting whereas the burial cements were formed in relatively high temperature and low water/rock ratio conditions. Very finely and finely crystalline mosaic dolomites with ${\delta}^{18}$O value of -8.2%$_o$ PDB, ${\delta}^{13}$C value of -1.9 %$_o$ PDB, and 213ppm Sr, 3654ppm Fe, and 114ppm Mn concentrations, respectively are interpreted to have been formed penecontemporaneously in supratidal flat and then recrystallized in the low water/rock ratio burial environment. Geochemical data suggest that the low water/rock ratio burial environment was the dominant diagenetic setting in the Chongson Limestone. The Chongson Limestone has experienced marine and meteoric diagenesis during early diagenesis. With deposition of Haengmae and Hoedongri formations part of the Chongson Limestone was buried beneath these formations and it experienced shallow burial diagenesis. During the Devonian the Chongson Limestone was tectonically deformed and subaerially exposed. During the Carboniferous to the Permian about 3.3km thick Pyongan Supergroup was deposited on the Chongson Limestone and the Chongson Limestone was in deep burial depths and stylolite, burial cements, blocky calcite and saddle dolomite were formed. After this burial event the Chongson Limestone was subaerially exposed during the Mesozoic and Cenozoic by three periods of tectonic disturbance including Songnim, Daebo and Bulguksa disturbance. Since the Bulguksa disturbance during Cretaceous and early Tertiary the Chongson Limestone has been subaerially exposed.

  • PDF

Inferred Differential Stress from Twinning in Calcite of Gounri Formation in the Northern Area of Worak-san, Korea (월악산북측(月岳山北側) 고운리층(古雲里層) 방해석(方解石) 쌍정(雙晶)을 이용(利用)한 추정차응력(推定差應力) 분석(分析))

  • Ihm, Myeong Hyeok;Kim, Young Eom;Chang, Tae Woo
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.177-186
    • /
    • 1991
  • Ogchon Supergroup directly contacts with Choseon Supergroup in the northern area of Worak-san, where evidences indicating thrust-fault formed during $D_2$-deformation are observed. On footwall of thrust fault, calcite veins in Gounri Formation belonging to Choson Supergroup may be deformed during thrust faulting($D_2$). Calcite veins are parallel to axial plane cleavage($S_2$) of $F_2$ fold and truncate slaty cleavage($S_1$). Therefore, we can use deformation twins in calcite grains of the veins as a marker for inferred differential stress operated upon thrust faulting. The inferred differential stresses are estimated at 190 Mpa from K, sample. The stress from K, sample close to the contact between Ogchon Supergroup and Choseon Supergroup shows a higher value than $K_2$-$K_6$ samples, probably having an important influence upon thrust faulting. The differential stress reveal again high value at $K_7$ sample, which may suggest the presence of another thrust fault.

  • PDF