• 제목/요약/키워드: 방출 압력

Search Result 304, Processing Time 0.023 seconds

ROOT RESORPTION OF PRIMARY TEETH WITHOUT PERMANENT SUCCESSORS (계승영구치가 선천적 결손된 유치의 치근 흡수)

  • Lee, Jung-Eun;Lee, Jae-Ho;Choi, Hyung-Jun;Kim, Seong-Oh;Song, Je-Seon;Son, Heung-Kyu;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.625-630
    • /
    • 2009
  • Root resorption of primary teeth usually occurs as the succeeding permanent teeth erupt, which induces differentiation of the hemopoietic cells into osteoclasts. Their root resorption pattern reflects the eruption path of the succeeding permanent teeth, and eventually the primary teeth shed as their succeeding permanent teeth erupt. Even when a permanent tooth germ is congenitally missing, root resorption of the corresponding primary tooth may still occur due to various factors, such as inflammation, traumatic occlusal force, and weakness of periodontium etc. Such congenital missing of permanent teeth is a commonly observed phenomenon in human be ing, and it often accompanies delayed retention of primary teeth. The etiologic factors for congenital missing in elude not only systemic diseases, but also local factors and human evolution process. In the radiographs of the cases in this report, the primary teeth without succeeding permanent teeth show pathologic root resorption. Root resorption progressed about 1/2~3/4 of the roots, and the surfaces of the resorption area were irregular. Considering high susceptibility of the periodontal ligament of primary teeth to root resorption, pathologic root resorption of primary teeth with delayed retention can be explained by the increased masticatory muscle force and abnormal occlusion developed during the mixed dentition. When the primary teeth without succeeding permanent teeth are lost, decision for space maintenance is required and long-term treatment plan for further prosthetic or orthodontic treatment should be establsihed.

  • PDF

THE EFFECTS OF VARIOUS CURING LIGHT SOURCES ON THE MICROHARDNESS OF LIGHT-ACTIVATED RESTORATIVE MATERIALS (다양한 광원에 의한 광중합형 수복물질의 미세경도에 관한 연구)

  • Choi, Nam-Ki;Yang, Kyu-HO;Kim, Seon-Mi;Choi, Choong-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.634-643
    • /
    • 2005
  • The aim of this study is to evaluate the effects of blue light emitting diode (LED) Light Curing Units (FreeLight 2, L.E.Demetron I, Ultra-Lume 5) on the microhardness of three resin composites (Z250, Point 4, Dyract AP) and to determine their optimal curing time. Samples were made using acrylic molds $(2.0mm{\times}3mm)$ of each composite. All samples were prepared over a Mylar strip placed on a flat glass surface. After composite placement on the molds, the top surface was covered with another Mylar strip and a glass slab was gently pressed over it. The times of irradiation were as follows: Elipar TriLight, 40 s; Elipar FreeLight 2. L.E.Demetron I, and Ultra-Lume 5, 10s, 20s, 40s, respectively. Mean hardness values were calculated at the top and bottom for each group. ANOVA and Sheffe's test were used to evaluate the statistical significance of the results. Results showed that FreeLight 2, Ultra-Lume 5, and L.E.Demetron I were able to polymerize point 4 in 20 seconds to a degree equal to that of the halogen control at 40 seconds. FreeLight 2 and L.E.Demetron I were able to polymerize Z250 in 10 seconds to a degree equal to that of the halogen control at 20 seconds. FreeLight 2 and L.E.Demetron I were able to polymerize Dyract AP in 10 seconds to a degree equal to that of the halogen control at 40 seconds. The commercially available LED curing lights used in this study showed an adequate microhardness with less than half of the exposure time of a halogen curing unit.

  • PDF

Separation and Recovery of $SF_6$ Gas from $N_2/SF_6$ Gas Mixtures by using a Polymer Hollow Fiber Membranes (고분자 중공사 분리막을 이용한 $N_2/SF_6$ 혼합가스로부터 $SF_6$의 분리 및 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • $SF_6$ (Sulfur hexafluoride) possesses high GWP (Global Warming Potential) as sepcified by the IPCC (Intergonvernmental Panel of Climate Change). Recently, the recovery-separtion of $SF_6$ research area, including permeation properties studies using various membrane's materials and the practical operation of recovery-separtion using membrane of waste $SF_6$ gas is in the initial state. The separation efficiency of a single $SF_6$ and waste $SF_6$ mixture was evaluated using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. According to the results of single gases permeation properties, PI membrane has the highest permselectivity of $N_2$ gas in $N_2/SF_6$ gas. Under the condition of P=0.5 MPa, the highest concentration of recovered $SF_6$ is 95.6 vol % in the separation experiment of $SF_6/N_2$ mixture gas by PC membrane. Under the operation pressure of P=0.3 MPa at a fixed retentate flow rate fixed of 150 cc/min, the maximum recovery efficiency of $SF_6$ is up to 97.8% by PSF membrane. From the results above, it is thought that the separation and recovery technique of $SF_6$ gas using membrane will be used as the representative eco-technology in the $SF_6$ gas treatment in the future.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.