• Title/Summary/Keyword: 방전 용량

Search Result 571, Processing Time 0.021 seconds

Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction (고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성)

  • Hong, Min Young;An, Sang-Jo;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.105-112
    • /
    • 2020
  • Transition metal oxide, which undergoes a conversion reaction in the negative electrode material for a lithium-ion batteries, has a high specific capacity, but still has several critical problems. In this study, manganese pyrophosphate (Mn2P2O7), nickel pyrophosphate (Ni2P2O7), and carbon composite materials with pyrophosphates as novel negative electrode materials instead of transition metal oxide, are synthesized through simple solid-state reaction. The initial reversible capacity of Mn2P2O7 and Ni2P2O7 are 333 and 340 mAh g-1, and when the composite materials are composed with carbon, the reversible capacity increases to 433 and 387 mAh g-1, respectively. The initial Coulombic efficiency is also improved by about 10%. The Mn2P2O7 and carbon composite material has the highest initial capacity and efficiency, and has the best cycle performance. Mn2P2O7 containing polyanion, has a lower specific capacity due to the large mass of polyanion compared to MnO (manganese oxide). However, since Mn2P2O7 shows a voltage curve with a slope, the charging (lithiation) voltage increases from 0.51 to 0.57 V (vs. Li/Li+), and the discharge (delithiation) voltage decreases from 1.15 to 1.01 V (vs. Li/Li+). Therefore, the voltage efficiency of the cell is improved because the voltage difference between charging and discharging is greatly reduced from 0.64 to 0.44 V, and the operating voltage of the full cell increases because the negative electrode potential is lowered during the discharging process.

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery (전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성)

  • 안준구;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.593-598
    • /
    • 2004
  • To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

Characterization on the electrochemical and structural properties of polyanion cathode material Li2MnSiO4/C depending on the synthesis process (합성 방법에 따른 Li2MnSiO4/C 다중음이온 양극활물질의 구조 및 전기화학적 성질)

  • Lee, Young-Lim;Chung, Young-Min;Song, Min-Seob;Ju, Jeh-Beck;Cho, Won-Il
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • $Li_2MnSiO_4$/C was synthesized by solid state reaction and solution synthesis with sucrose for carbon source. The X-ray diffraction patterns of solid state reaction indicates small amount of impurities. By FE-SEM and HR-TEM, solution synthesis comprised several tens of nanometer comparing to 500~600 nm of $Li_2MnSiO_4$/C prepared by solid state reaction. The $Li_2MnSiO_4$/C prepared by solution synthesis show better electrochemical performance than solid state reaction. The first charge-discharge capacity are 236, 189 mAh/g respectively by solution synthesis. But its cycle performance was poor as yet and its capacity retention was 62% after 10 cycles.

Modeling of the Cycle Life of a Lithium-ion Polymer Battery (리튬 이온 폴리머 전지의 사이클 수명 모델링)

  • Kim, Ui Seong;Lee, Jungbin;Yi, Jaeshin;Shin, Chee Burm;Choi, Je Hun;Lee, Seokbeom
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.344-348
    • /
    • 2009
  • One-dimensional modeling was carried-out to predict the capacity loss of a lithium-ion polymer battery during cycling. The model not only accounted for electrochemical kinetics and ionic mass transfer in a battery cell, but also considered the parasitic reaction inducing the capacity loss. In order to validate the modeling, modeling results were compared with the measurement data of the cycling behaviors of the lithium-ion polymer batteries having nominal capacity of 5Ah from LG Chem. The cycling was performed under the protocol of the constant current discharge and the constant current and constant voltage charge. The discharge rate of 1C was used. The range of state of charge was between 1 and 0.2. The voltage was kept constant at 4.2 V until the charge current tapered to 50 mA. The retention capacity of the battery was measured with 1C and 5C discharge rates before the beginning of cycling and after every 100 cycles of cycling. The modeling results were in good agreement with the measurement data.

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries (질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용)

  • Yun, Tae-Kwan;Bae, Jae-Young;Park, Sung-Soo;Won, Yong-Sun
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.

Performance of Nanosized Fe3O4 and CuO Supported on Graphene as Anode Materials for Lithium Ion Batteries (그래핀에 담지된 Fe3O4와 CuO 나노입자의 리튬이차전지 음극성능)

  • Jeong, Jae-Hun;Jung, Dong-Won;Han, Sang-Wook;Kim, Kwang-Hyun;Oh, Eun-Suok
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.239-244
    • /
    • 2011
  • In this study, $Fe_3O_4$/graphene and CuO/graphene composites were synthesized by the polyol reduction method using ethylene glycol, and their performances as the anodes of lithium ion batteries were evaluated. The physical characteristics of the synthesized composites were analyzed by SEM, XRD, and TGA. In addition, their electrochemical properties were examined by the electrochemical analysis techniques such as charge/discharge performance, cyclic voltammetry, and AC impedance spectroscopy. The cells composed of $Fe_3O_4$/graphene and CuO/graphene composites showed better performance than the graphene electrode, due to the dispersion of nanosized $Fe_3O_4$ or CuO on the surface of graphene and the formation of good electrical network in the electrode. Their composites kept the reversible capacity more than 600 mAh/g even after the charging/discharging of 30 cycles.

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries (고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구)

  • Cha, E.H.;Kim, Y.W.;Lim, S.A.;Lim, J.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.

Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery (금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성)

  • Choi, Won-Chang;Lee, Joong-Kee;Byun, Dong-Jin;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • Various kinds of metals were coated on synthetic graphite in order to investigate the relationship between film characteristics and their electrochemical performance. Gas suspension spray coating method was employed for the coating of synthetic graphite. In our experimental range, all of the metal coated synthetic graphite showed the higher capacity than that of raw material at high C-rate mainly due to decrease in impedance of passivation film. In cyclic voltammetry experiments, silver-coated and tin-coated graphite anodes found the lithium-alloy reaction. Considering smaller amount of metal coating, the most increase in discharge capacity was caused by improvement of conductivity of the electrode. When single-component metal was coated, silver-coated graphite anode exhibited the highest discharge capacity and better cycleability. Double components of silver-nickel coated active material showed the highest discharge capacity, rate capability and the best cycle performance in the range of our experiments.

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향으로 자화된 용량 결합형 RF 플라즈마의 특성 연구)

  • 이호준;태흥식;이정해;신경섭;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • Magnetic field is commonly used in low temperature processing plasmas to enhance the performance of the plasma reactors. E$\times$B magnetron or surface multipole configuration is the most popular. However, the properties of capacitively coupled rf plasma confined by axial static magnetic field have rarely been studied. With these background, the effect of magnetic field on the characteristics of capacitively coupled 13.56 MHz/40 KHz argon plasma was studied, Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and emissive probe. At low pressure region (~10 mTorr), ion current increases by a factor of 3-4 due to reduction of diffusion loss of charged particles to the wall. Electron temperature slightly increases with magnetic field for 13.56 MHz discharge. However, for 40 KHz discharge, electron temperature decreased from 1.8 eV to 0.8 eV with magnetic field. It was observed that the magnetic field induces large temporal variation of the plasma potential. Particle in cell simulation was performed to examine the behaviors of the space potential. Experimental and simulation results agreed qualitatively.

  • PDF

Electrochemical Study of Electrode Material of Ni-MH Battery for HEV and PEMFC Fuel Cell (HEV 및 PEMFC 연료전지용 니켈수소 전지의 전극재료에 대한 전기화학적 평가)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : misch metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for the anode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the cyclic voltammetry and the galvanostatic charge/discharge experiments were performed. A single particle of the alloy showed the discharge capacity of 280[mAh/g], the value being 90[%] of the theoretical capacity. Data were compared with that of the composite film consisting of the alloy particles and a polymer binder, which is more practical form for Ni-MH batteries. Additionally, pulverization of the alloy particles are directly observed. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.