• 제목/요약/키워드: 방전플라즈마소결

검색결과 143건 처리시간 0.026초

방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성 (Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering)

  • 임채홍;박종석;양상선;윤중열;이진규
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

Cu 함유량에 따른 Mo-Cu 박막의 특성 평가

  • 이한찬;문경일;신승용;이붕주;신백균
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.259-259
    • /
    • 2012
  • Mo-Cu 합금은 열전도도, 전기전도도가 우수하고 합금조성에 따라 열팽창계수의 조절이 가능하여 반도체소재, 방열소재, 접점소재 등에 적용가능성이 높은 재료로 주목받고 있다. 또한 상태도 상에서 고용도가 전혀 없기 때문에 박막을 제작하였을 경우, 나노 복합체 형성이 용이하고 질소 분위기에서는 MoN-Cu로 상분리가 가능하여 하드상과 소프트상의 물성을 동시에 보유한 박막 제작이 가능하다. 또한 고온에서 산화반응에 의해 생기는 $MoO_3$, $CuO_3$와 같은 준안정상의 산화물들은 육방정계 구조(HCP)를 가지며 전단특성이 우수하여 자동차 저마찰 코팅재료로써 많은 연구가 진행되고 있다. 반면, Mo-Cu 는 상호간에 고상은 물론 액상에서도 고용도가 전혀 없기 때문에 일반적인 방법으로는 합금화 또는 복합화가 어렵다. 또한 Mo-Cu 박막을 제작할 경우 복수의 타겟을 이용해야 하기 때문에 성분조절과 구조적 제어가 불리하고 공정의 복잡화라는 단점을 가지고 있으며 추가적으로 다른 원소를 첨가하여 3원계, 4원계 이상의 박막을 형성하는 것에 한계가 있다. 따라서 본 연구에서는 위와 같은 문제점을 해결하기 위하여 상호간의 고용도가 없는 재료의 합금화가 용이한 기계적 합금화법(Mechanical Alloying)을 이용하여 Mo-Cu 합금분말을 제조하였고, 준안정상태의 구조의 유지가 가능한 방전 플라즈마 소결법(Spark Plasma Sintering)을 이용하여 합금타겟을 제작하였다. Mo-Cu 박막은 제작된 합금타겟을 사용하여 DC 스퍼터링 공정으로 제작하였다. Mo-Cu 박막의 공정조건으로는 타겟조성, 공정분위기, 가스 비율로 정하여 실험을 진행하였다. 제작된 박막은 자동차 코팅재료로써의 적용가능성을 보기 위해서 내열성, 내식성, 내마모성의 특성을 평가하였다.

  • PDF

방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성 (Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process)

  • 김상환;김남우;정영근;오승탁;김영도;이성;석명진
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성 (Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite)

  • 주원;김영도;심재진;최상훈;현승균;임경묵;박경태
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.377-383
    • /
    • 2017
  • Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

습식 교반 및 방전 플라즈마 소결 공정에 의한 CNT 분산 Cu 복합재료 제조 (Fabrication of CNT dispersed Cu matrix composites by wet mixing and spark plasma sintering process)

  • 조승찬;조일국;이상복;이상관;최문희;박재홍;권한상;김양도
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.158-164
    • /
    • 2018
  • Multi-walled carbon nanotube (MWCNT)-copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT-Cu composites. The electrical conductivities of MWCNT-Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT-Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.

방전플라즈마 소결 공정을 이용한 CoSb3/Al/Ti/CuMo 접합 특성 (Joining Properties of CoSb3/Al/Ti/CuMo by Spark Plasma Sintering Process)

  • 김민숙;안종필;김경훈;김경자;박주석;서원선;김형순
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.549-553
    • /
    • 2014
  • $CoSb_3$-based skutterudite compounds are candidate materials for thermoelectric power generation in the mid-temperature range (600 - 900 K) because their thermoelectric properties can be enhanced by doping and filling. The joining property of thermoelectric module electrodes containing thermoelectric materials is of great importance because it can dominate the efficiency of the thermoelectric module. This study examined the properties of $CoSb_3$/Al/Ti/CuMo joined by the spark plasma sintering technique. Titanium thin foil was used to prevent the diffusion of copper into $CoSb_3$ and Aluminum thin foil was used to improve the adhesion between $CoSb_3$ and Ti. The insertion of an Aluminum interlayer between the Ti and $CoSb_3$ was effective for joining $CoSb_3$ to Ti by forming an intermediate layer at the Al-$CoSb_3$ boundary without any micro cracks. Specifically, the adhesion strength of the Ti/Al/$CoSb_3$ joining interface showed a remarkable improvement compared with our previous results, without deterioration of electrical property in the interface.

방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성 (The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering)

  • 조호중;안인섭;이용희;박동규
    • 한국분말재료학회지
    • /
    • 제14권4호
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

기계적 합금화법과 방전 플라즈마 소결법으로 제조된 Al-25Ti-8Mn 금속간 화합물의 산화 거동 (Oxidation Behavior of Al-25Ti-8Mn Intermetallic Compound Fabricated by Mechanical Alloying and Spark Plasma Sintering)

  • 최재웅;김기홍;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.439-443
    • /
    • 2005
  • The oxidation behavior and the thermal stability of nanocrystalline Al-25Ti-8Mn intermetallic compound were investigated. $Al_3Ti$ intermetallic compound, which has a potential for high temperature structural material, was fabricated by mechanical alloying(MA) with $8at.\%$ Mn to enhance the thermal stability and ductility. And Al-25Ti-8Mn intermetallic compound was sintered by spark plasma sintering(SPS) at $700^{\circ}C$. After sintering process, cubic $Ll_2$ structure was maintained without phase transformation and the grain size was about 50nm. To investigate the oxidation behavior of the specimens, thermal gravimetric analysis(TGA) was performed at 700, 800, 900, and $1000^{\circ}C$ for 24 h in $O_2$. As the temperature increased from $700^{\circ}C\;to\;900^{\circ}C$ the weight gain of specimens increased. However at $1000^{\circ}C$, unlike the oxidation behavior of $700^{\circ}C\;to\;900^{\circ}C$, the weight gain of specimen decreased drastically and the transition from linear rate region to parabolic rate region occurred rapidly due to the dense $\alpha-Al_2O_3$.

방전플라즈마 소결법에 의해 제조된 Al 타겟과 스퍼터링 박막의 특성평가 (Fabrication and Evaluation of Al Targets using the SPS Technique and their Sputter Fabricated Films)

  • 현혜영;김민정;유정호;정칠성;양준모;오익현;박현국;이승민;오용준
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.493-497
    • /
    • 2011
  • The basic properties and electrical characteristics of sputtering films deposited with a commercial cast target and spark plasma sintering (SPS) were compared and analyzed. The results, revealed that, the Al film prepared by heating at $60^{\circ}C/min$ (SPS process) showed a specific resistance similar to the commercial cast Al film. In addition, the results of XRD, SIMS and TEM, showed that there was not much difference in the crystal structure and impurities between the two films. Consequently, the SPS Al target was found to have properties quite similar to the commercial one and it is expected to be applied in future research to the metal wiring material for semiconductor/display devices.

방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가 (Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process)

  • 김주훈;박현국
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.