• Title/Summary/Keyword: 방전면적

Search Result 92, Processing Time 0.027 seconds

The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH (NaOH 화학적 활성화로 제조된 하이브리드 커패시터의 전기화학적 특성)

  • Choi, Jeong Eun;Bae, Ga Yeong;Yang, Jeong Min;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.308-312
    • /
    • 2013
  • Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481 $m^2/g$) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using $LiMn_2O_4$, $LiCoO_2$ as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, $TEABF_4$) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using $LiMn_2O_4$/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon (쌀밥으로 제조된 활성탄을 사용하는 전기이중층형 슈퍼커패시터 전극의 전기화학적 특성)

  • Jo, Un;Kim, Yong-Il;Yoon, Jae-Kook;Yoo, Jung-Joon;Yoon, Ha-Na;Kim, Sung-Soo;Kim, Jong-Huy
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • From the cooked-rice as a raw material, activated carbons throughout a hydrothermal synthesis and vacuum soak of KOH for chemical activation were obtained. Activated carbon electrodes for electric double layer supercapacitors were prepared and electrochemical characteristics were examined. Including the specific surface area by BET method and pore size distribution by NLDFT method, physical properties of activated carbons were investigated by means of SEM, EDS, XRD, and TG analyses. Cycle voltammetry and AC-impedance measurements were conducted to confirm the electrochemical characteristics for the electrodes. From hydrothermal synthesis, $5{\sim}7{\mu}m$ diameters of spherical carbons were obtained. After the activation at $800^{\circ}C$, it was notable for the activated carbon to be the specific surface $1631.8cm^2/g$, pore size distribution in 0.9~2.1 nm, and micro-pore volume $0.6154cm^3/g$. As electrochemical characteristics of the activated carbon electrode in 6M KOH electrolyte, it was confirmed that the specific capacitances of 236, 194, and 137 F/g at the scan rate of 5, 100, and 500 mV/s respectively were exhibited and 91.2% of initial capacitance after 100,000 cycles at 200 mV/s was maintained.

Analysis of Electromagnetic Wave Scattering Characteristics of Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석)

  • Lee, Soo-Min;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper presented measurement results of scattering characteristics of dielectric barrier discharge (DBD) plasma at atmospheric pressure. In this paper, plasma actuator is fabricated by parallel connecting of basic configuration of DBD plasma actuator, then plasma could be generated by applying 14 kV, 4 kHz of high voltage generator. In order to measure the scattering characteristics of DBD plasma, in this paper, two horn antennas and vector network analyzer are used to compare the S-parameter. Because of the structure of fabricated plasma generator, different result is obtained as antenna polarization changes. When antenna polarization is parallel to electrodes of plasma generator, the scattered field is reduced by 2 dB in maximum. In addition, for parallel polarization case, PEC is set up behind the plasma generator to measure backward scattered field. When the observation angles are $40^{\circ}C$ and $60^{\circ}C$, the amount of reduced scattered field is 2 dB in maximum at 5 GHz.

Changes of discharge voltage of plate-type sodium sulfur batteries in the early charge/discharge cycles (평판형 나트륨 유황 전지의 초기 충방전시 방전전압 변화)

  • Kim, Seong-In;Kim, Heon-Tae;Choi, Hee-Lack;Lim, San-Su-Dae;Yang, Kee-Deok;Beum, Jin-Hyung;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.164-168
    • /
    • 2014
  • The sodium-sulfur batteries which operate at $350^{\circ}C$ have been mainly used in the field of energy storage system. This batteries consist of liquid sodium anode, sulfur cathode and ${\beta}^{{\prime}{\prime}}$-alumina solid electrolyte. The conditioning process for stabilization of the batteries is essential since the cells show considerable fluctuation of discharge voltage at the beginning of discharge/charge cycles. It is found that one of the reasons of the fluctuation is the gradual change of contact area between molten sodium and solid electrolyte.

Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode (망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성)

  • Eom Seung-Wook;Doh Chil-Hoon;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Composite ratio of $LiMn_2O_4$ in cathode was optimized as function of specific surface area. Binder has to be used as possible as little, and it should maintain adhesive property between cathode composite and current collector even though in electrolytes. For this purpose, We used 'Hot Roll Pressing' method, and it was effective. To prevent separation of cathode composite from current collector, PVDF(Polyvinylidenefluoride) has to be mixed more than $1.1\%$ in weight ratio to sum of surface area of lithium manganese oxide and conducting agents. Specific internal resistance was reduced as by increasing electrical conductivity of cathode. And Ratio of 2C rate discharge capacity to 0.2C rate discharge capacity was increased by $17\%$, as increasing electrical conductivity from 0.019 mS/cm to 0.036 mS/cm.

The Characteristics of Vanadium based Composite Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 복합양극의 특성)

  • Kim Jong-Jin;Son Won-Keun;Kim Jae-Yong;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • A new treatment of $LiV_3O_8$ has been proposed for improving its electrochemical behavior as a cathode material for secondary lithium batteries. Lithium trivanadate, $LiV_3O_8$, can be prepared in a finely dispersed form by dehydration of aqueous lithium trivanadate gels. The ultrasonic treatment method for Liv30s has been examined in comparison with $LiV_3O_8$ prepared by solutionmethod. The ultrasonically treated products in water were characterized by XRD (X-ray diffractometry), TGA (thermogravimetric analysis) and SEM (scanning electron microscopy). These measurements showed that the ultrasonic treatment process of aqueous $LiV_3O_8$ caused a decrease in crytallinity and considerable increased in specific surface area and interlayer spacing. The product, ultrasonically treated in water for 2 h, showed a high initial discharge capacity and was charge-discharge cycled without large capacity loss. The ultrasonic treated Liv30s can improve not only the specific capacity, but also the cycling behavior

The Characteristics of the Ozonizer with Cascade-Type Plate Electrode (Cascade형 평판전극 오존발생기의 특성)

  • Yoon, Dae-Hee;Song, Hyun-Jig;Lee, Sang-Keun;Park, Kwang-Seo;Kim, Jong-Hyun;Park, Won-Zoo;Lee, Kwong-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.80-87
    • /
    • 2009
  • Recently, ozone has been utilized in various fields thanks to its effectiveness, and has been in ever-growing demand. Accordingly, various kinds of ozonizers have been examined among researchers. This paper is concerned with developing the cascade-type plate electrode ozonizer(PTO) for improvements of indoor air, water supply and drainage and investigating its characteristics. Four types of ozonizers have been devised according to their size, numbers and arrangement Electric discharge area of each type of ozonizer has the same size of 22,400[$mm^2$], and its discharge power has the maximum 40[w]. As the result of having studied ozone generation ozone concentration and ozone yield characteristics of each ozonizer, we found that the type of ozonizer in which eight plates were arranged into cascade type(PTO-4) was the most excellent one.

Electrochemical Properties of Natural Graphite coated with PFO-based Pitch for Lithium-ion Battery Anode (리튬이차전지 음극용 석유계 피치로 코팅된 천연 흑연의 전기화학적 특성)

  • Kim, Geun Joong;Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.672-678
    • /
    • 2019
  • The electrochemical properties of pitch-coated natural graphite(NG) were investigated as an anode for lithium-ion batteries. The anode materials were prepared by heat-treatment of mixture of NG and petroleum pitch at $1000^{\circ}C$. The pitches with various softening points were used as carbon precursor. The physical properties of anode materials were analyzed by TGA, SEM, PSA and BET. As the softening point increased, the thickness of the coating layer increased and the specific surface area decreased. The electrochemical performances were investigated by initial charge/discharge efficiency, cycle stability, cyclic voltammetry, rate performance and electrochemical impedance spectroscopy. The carbon-coated NG using pitch with softening points of $250^{\circ}C$ showed an initial discharge capacity of 361 mAh/g and a coulombic efficiency of 92.6%. Also, the rate performance(5 C/0.2 C) was 1.6 times higher than that of NG, and it had a capacity retention (90%) after 50 cycles at 0.5 C.

Electrochemical Characteristics of the Activated Carbon Electrode Modified with the Microwave Radiation in the Electric Double Layer Capacitor (전기이중층캐패시터에서 마이크로파에 의해 개질된 활성탄소전극의 전기화학적 특성)

  • Sun, Jin-Kyu;Um, Eui-Heum;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Modifying surface of activated carbon for the electrode of EDLC with an organic electrolyte was investigated to improve the electrochemical performance of EDLC by the microwave radiation. Three kinds of activated carbons, prepared activated carbon from petroleum cokes and pitch cokes and commercial activated carbon BP-25, were used for this study. For all investigated activated carbons, hydrophilic functional groups-containing oxygen disappeared from the surface of activated carbon as microwave radiation. And as microwave radiation time was increased, the specific surface area and total pore volume of activated carbons were reduced and average pore diameter were increased. From theses effects, interfacial resistance of EDLC with the modified activated carbon electrode was drastically decreased, and discharge capacitance was increased although the specific surface area of activated carbon was reduced by this microwave radiation.

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF