• Title/Summary/Keyword: 방위각 보정

Search Result 62, Processing Time 0.015 seconds

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.