• Title/Summary/Keyword: 방사화재고량

Search Result 3, Processing Time 0.016 seconds

Inventory Estimation of 36Cl and 41Ca in Concrete of Kori Unit 1 (고리 1호기의 콘크리트 내 36Cl 및 41Ca의 방사화재고량 평가)

  • Jang, Mee;Lim, Jong Myoung;Kim, Hyun Chul;Kim, Chang-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.121-126
    • /
    • 2019
  • The radionuclide inventory prediction of a nuclear power plant can help establish decommissioning plan by providing information of radiation environment. Accumulated radionuclides in reactors and related facilities after reactor shutdown can be divided into neutron activated materials and contaminated materials. Among the neutron activated radionuclides, $^{36}Cl$ and $^{41}Ca$ are important from the viewpoint of disposal because of its long half-life and physiochemical characteristics. In this research, we calculated the radionuclides of $^{36}Cl$ and $^{41}Ca$ in bioshielding concrete by estimating the neutron flux and cross section using the MCNPX. And we evaluated the inventories of $^{36}Cl$ and $^{41}Ca$ using the activation calculation code ORIGEN2.

A Study on Radioactive Source-term Assessment Method for Decommissioning PWR Primary System (PWR 1차계통내 해체 방사성선원항 평가방법에 관한 연구)

  • Song, Jong Soon;Kim, Hyun-Min;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.153-164
    • /
    • 2014
  • Currently, there are many programs which are now being developed or already developed to predict radionuclide and corrosion product at the stage of designing NPP. However, since there are not many developments in evaluating quantity of activation corrosion products occurring when disassembling a nuclear power plant there exist some difficulties in calculating accurately. In order to evaluate activation products inventory for the research of effect of neutron activation in the reactor vessel, component of nuclear reactor and adjacent structures, it should be evaluated by using operation history of nuclear reactor, material composition of structure and average neutron flux in every field representing fixed structure of nuclear reactor. In this study, CORA, PACTOLE, CRUDSIM, CREAT and ACE codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor which is used at the stage of designing. As a future study, the accuracy in calculating the quantity of product corrosion can be increase by finding out the possibility of use and improvement for evaluation of the decontamination.