• Title/Summary/Keyword: 방사성폐기물 유리화

Search Result 75, Processing Time 0.029 seconds

소각재 고온용융 고화체 침출표면의 미세구조 및 조성변화

  • 김인태;이규성;서용칠;김준형
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2002.05a
    • /
    • pp.157-158
    • /
    • 2002
  • 유해폐기물 및 모의 방사성폐기물 소각재에 붕규산유리 계통의 기본유리매질을 혼합하여 고온에서 용융시켜서 제조한 유리 고화체를 대상으로 침출실험후의 미세구조 및 표면조성의 변화, 침출된 시료의 표면에서 고화매질 성분별 함량과 두께에 따른 농도 기울기 및 결정질 화 등을 평가하여 유리고화체의 침출거동에 따른 표면변화 특성을 고찰하였다.

  • PDF

Numerical Analysis of Off-Gas Flow in Hot Area of the Vitrification Plant (유리화공정 고온영역에서의 방사성 배기체 유동해석)

  • Park, Seung-Chul;Kang, Won-Gu;Hwang, Tae-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2007
  • Appropriate numerical models for the simulation of off-gas flow in hot area of the vitrification plant have been developed in this study. The models have been applied to analyze the effect of design parameters of real plant and numerical analyses have been performed for CCM(Cold Crucible Melter), pipe cooler and HTF(High Temperature Filter). At first, the effect of excess oxygen and the ratio of oxygen distribution on combustion characteristics in the CCM has been studied. Next, solidification behavior of radio nuclide in the pipe cooler has been numerically modeled and scrutinized. Finally, flow pattern in accordance with the location of off-gas entrance of the HTF has been compared.

  • PDF

Numerical Analysis of Off-Gas Flow in Hot Area of the Vitrification Plant (유리화공정 고온영역에서의 방사성 배기체 유동해석)

  • Park Seung-Chul;Kim Byong-Ryol;Shin Sang-Woon;Lee Jin Wook;Kang Won Gu;Hong Seok Jin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.69-78
    • /
    • 2005
  • Appropriate numerical models for the simulation of off-gas flow in hot area of the vitrification plant have been developed in this study. The models have been applied to analyze the effect of design parameters of real plant and numerical analyses have been performed for CCM(Cold Crucible Melter), pipe cooler and HTF(High Temperature Filter) At first, the effect of excess oxygen and the ratio of oxygen distribution on combustion characteristics in the CCM has been studied. Next, solidification behavior of radio nuclide In the pipe tooler has been numerically modeled and scrutinized. Finally, flow pattern In accordance with the location of off-gas entrance of the HTF has been compared.

  • PDF

Feasibility Study on Vitrification for Rare Earth Wastes of PyroGreen Process (파이로그린공정 희토류폐기물 유리화 타당성 연구)

  • Kim, Cheon-Woo;Lee, Byeong Gwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The rare earth oxide wastes consisting of major 8 nuclides Y, La, Ce, Pr, Nd, Sm, Eu and Gd, are generated during the salt waste treatment of PyroGreen process. The final form of the rare earth is generated as the oxide state. In this study, six candidate glasses were developed to evaluate the feasibility for vitrifying the rare earth oxide wastes within the borosilicate glass system. The solubilities of the mixture of the rare earth oxide waste showed less than 25wt% at $1,200^{\circ}C$, less than 30wt% at $1,300^{\circ}C$, respectively. It means that solubility is increased with the temperature increment. The liquidus temperature of the homogeneous glass with 20wt% waste loading was determined as less than $950^{\circ}C$. In more than solubility of rare earth oxides glass, formation of rare earth-oxide-silicate crystal in glass-ceramic occurred as the secondary phase. As their viscosity at melting temperature $1,200{\sim}1,300^{\circ}C$ was less than 100 poise, electrical conductivity was higher than 1 S/cm, 20~25wt% waste loading glasses with good surface homogeneity are judged to have good operability in cold crucible induction melter. Other physicochemical properties of the developed glasses are going to be experimented in the future.