• Title/Summary/Keyword: 방사성탄소

Search Result 151, Processing Time 0.025 seconds

A Comparison of the Soil Physicochemical Properties of the Forest Stands in the Young-il Erosion Control District (영일사방사업지의 임분별 토양특성 비교분석)

  • Hur, Tae-Chul;Joo, Sung-Hyun;Cho, Hyun-Je
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.444-450
    • /
    • 2009
  • In this study, the physicochemical properties of the soils in the forest stands in the ecological restoration project in the Young-il Erosion Control District were investigated according to the type of plant growing therein. The soil texture was mostly sandy loam (SL), and the sand content was 59.7% on average while the average soil pH was 5.0, which was lower than the average pH of Korea's forest soil (5.5). Moreover, the average carbon, total nitrogen, and available phosphorus ($P_2O_5$) contents were 1.6%, 0.11%, and 3.7 ppm respectively. The C/N ratio was 15.1, and the average cation exchange capacity (CEC) was 13.2 cmol/kg. The physicochemical properties of the soils in the different forest stands were compared. Among all the stands, the Larix leptolepis stand had the highest pH 6.3 and the most stable C/N ratio (11.7). The Alnus firma-Styrax stand had the lowest pH 4.6 while the Pinus rigida stand had the lowest total nitrogen content. The Alnus firma-Styrax stand had the highest CEC (17.4 cmol/kg). The results showed that the Young-il Erosion Control Districtwas devastated and deprived of soil nutrients over a long period. Therefore, sustainable forest management, suchas tending and regeneration, are recommended for the Young-il Erosion Control District.

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

A Study on Artificial Radionuclides(134Cs, 137Cs and 239+240Pu) Distribution in the Sediment from Lake Euiam (의암호 퇴적물 내 인공방사성동위원소 (134Cs, 137Cs, 239+240Pu) 분포특성 연구)

  • Kim, Seung Hwan;Lee, Sang-Han;Oh, Jung Suk;Choi, Jong Ki;Kang, Tae Gu
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.223-230
    • /
    • 2015
  • The objective of this study is to identify the radionuclide distribution in public water by carrying out the analysis of artificial radionuclides($^{134}Cs$, $^{137}Cs$, $^{239+240}Pu$), natural radionuclide($^{210}Pb$) and TOC in the lake Euiam sediment in Chuncheon, South Korea. The $^{134}Cs$ concentration in all lake sediments showed below MDA values, and the $^{137}Cs$ concentration in lake sediment were ranged from MDA to $8.79Bq{\cdot}kg^{-1}-dry$. The $^{137}Cs$ concentrations in surface sediment were reported to be 2.4 to $4.2Bq{\cdot}kg^{-1}-dry$. The lowest concentration of $^{137}Cs$ was reported at St. 4 and the highest concentration was reported at St. 3, respectively. The $^{239+240}Pu$ concentration in lake sediment were ranged from 0.049 to $0.47Bq{\cdot}kg^{-1}-dry$. The lowest concentration was reported at St. 2 and the highest concentration was reported at St. 3. The correlation(r) between the $^{239+240}Pu$ concentration and $^{137}Cs$ concentration in lake sediment presented higher values (0.54 to 0.97) and this suggests the behavior and origin of $^{137}Cs$ is identical to the $^{239+240}Pu$ in the sediment. The $^{134}Cs$ concentration below MDA value and the $^{239+240}Pu/^{137}Cs$ ratio(mean value of 0.041) indicated that the artificial radionuclides in the sediment were originated from global fallout by the atmospheric testing of nuclear weapons conducted by former USSR and U.S.A, but not from the Fukushima Daiichi NPP accident. The sedimentation rate derived from $^{210}Pb$ age-dating method at St. 2 is calculated to be $0.31{\pm}0.06cm{\cdot}y^{-1}$. This value is similar to the value ($0.41{\pm}0.05cm{\cdot}y^{-1}$) estimated from the $^{137}Cs$ maximum peak produced from early 1960's. The content of TOC in lake Euiam sediments varied from 0.20 to 13.01%. While the highest correlation between TOC and $^{137}Cs$ concentration in the sediment were found at St. 1, the others presented the low correlation.

Determination of Iodide in spent PWR fuels (경수로 사용 후 핵연료 내 요오드 정량)

  • Choi, Ke Chon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • A study has been done on the separation of iodide from spent pressurized water reactor (PWR) fuels and its quantitative determination using ion chromatography. Spent PWR fuels were dissolved with mixed acid of nitric and hydrochloric acids (80 : 20 molL%) which can oxidize iodide to iodate to prevent it from be vaporized. After reducing ${IO_3}^-$ ­to $I_2$ in 2.5 M $HNO_3$ with $NH_2OH{\cdot}HCl$, Iodine was selectively separated from actinides and all other fission products with carbontetrachloride and back-extracted with 0.1 M $NaHSO_3$. Recovered iodide was determined using the ion chromatograph of which the column was installed in a glove box for the analysis of radioactive materials. In practice, spent PWR fuel with 42,000~44,000 MWd/MtU was analyzed and its quantity was compared to that calculated by burnup code, ORIGEN2. The agreement was achieved with a deviation of -8.3~-0.5% from the ORIGEN 2 data, $324.5{\sim}343.6{\mu}g/g$.

Analysis on the Generation Characteristics of $^{14}C$ in PHWR and the Adsorption and Desorption Behavior of $^{14}C$ onto ion Exchange Resin (중수로 원전$^{14}C$ 발생 특성 및 이온교환수지에 의한 $^{14}C$$\cdot$착탈 거동 분석)

  • 이상진;양호연;김경덕
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.147-157
    • /
    • 2004
  • The production of $^{14}C$ occurs in the Moderator(MOD), Primary Heat Transport System (PHTS), Annulus Gas System(AGS) and Fuel in the CANDU reactor. Among the four systems, The MOD system is the largest contributor to $^{14}C$ production(approximately 94.8%). $^{14}C$ is distributed of $^{14}CO_2$, $H_2^{14}CO_3$, $H^{14}{CO_3}^-$ and $^{14}{CO_3}^{2-}$ species as a function of the pH of water. Of these species, $H_2^{14}CO_3$ and $H^{14}{CO_3}^-$ form are predominant because the pH of MOD system is > 5. In this paper, adsorption-desorption characteristics of bicarbonate ion (${HCO_3}^-$) by IRN 150 resin was investigated. ${HCO_3}^-$ ion existed in neutral condition(app. pH 7)was reacted with ion exchange resin (IRN-150) and saturated with it. Then $NaNO_3$ and $Na_3PO_4$ solutions selected as extraction materials were used to make an investigation into feasibility of ${HCO_3}^-$ extraction from resin saturated with ${HCO_3}^-$. Desorption of $CO^{2+}$ and $Cs^+$ ion by $Na^+$ ion was not occurred, and desorption of ${HCO_3}^-$ ion by ${NO_3}^-$ and ${PO_4}^{3-}$ was occurred slowly. Also, the status of ion exchange which is used in Wolsong NPPs and generation of spent resin yearly were surveyed.

  • PDF

Decontamination of simulated radioactive metal waste by modified electrolytic Process with neutral salt electrolytes (개선된 중성염 진해공정을 이용한 모의 방사성 금속폐기물의 제염)

  • Lee, Ji-Hoon;Yuk, Wan-Yi;Yang, Ho-Yeon;Ha, Jong-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2002
  • Conventional and modified electrolytic decontamination experiment were performed in the 1.7 M solution of sodium sulfate and sodium nitrate tot decontamination of carbon steel as the simulated metal wastes which have been produced in large amounts from nuclear power plants. Anode ant cathode were used as inconel and titanium respective. The reaction time and temperature were 1 hr and $25^{\circ}C$ The analyses were performed of the characteristics such as weight loss arid thickness change of metal waste. suspended solid in electrolyte and SEM observation. In modified electrolyte decontamination system with increased current density ranged from 0.1 to $0.6A/cm^2$, the metal waste showed thickness changes of $0.48{\pm}0.005$ to $67.7{\pm}0.02{\mu}m$ in 1.7 M sodium sulfate and those of $0.06{\pm}0.005$ to $17.7{\pm}0.05{\mu}m$ in sodium nitrate. Metal waste in modified electrolyte decontamination system showed the thickness change of $9.8{\pm}0.01{\mu}m$ while it reacted up to $3.7{\pm}0.03{\mu}m$ in conventional system with $0.3 A/cm^2$ of current density and 1.7 M sodium sulfate. Decontamination efficiencies of modified electrolytic process ate much hither than that of conventional electrolytic process when both are applied to metal waste.

Present Status of Hydrogen Refueling Station in KIER (KIER 수소충전소 구축 현황)

  • Seo, Dong-Joo;Seo, Yu-Taek;Seo, Yong-Seog;Park, Sang-Ho;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.21-24
    • /
    • 2006
  • 수소의 소규모 분산 생산 기술은 본격 적 인 수소 인프라가 도입되기 전에 연료전지 자동차의 수소 충전용이나 분산 발전형 연료전지의 수소 공급을 위해 필요하다. 생산 용량은 수소 기준으로 $20{\sim}100 Nm^3/hr$ 정도로 현재로선 천연가스의 수증기 개 질법이 가장 경제적인 공정으로 알려져 있다. 소규모 생산에 따른 열효율 저하를 줄이 기 위해 단위 공정들이 통합된 컴팩트 개질 시스템의 개발이 필요하다. 연료전지 자동차용 수소 인프라 조기 구축을 위하여 수소충전소 구축과 국산화 천연가스 수증기 개질기 개발을 병행하여 진행하였다. 수소 충전소 구축 부분은 충전소 부지 확보, 건물 건축, 각종 유틸리 티 설치의 토목 부분과 천연가스 개질형 수소 제조 유닛 설치, 수소 압축, 저장, 디스펜싱 시스템 설치를 포함하고 있으며 고압 설비에 대한 인허가 대응 및 안전대책 작업도 진행하였다. 구축된 수소충전소는 향후 연료전지 자동차 연계 실증 프로그램에 활용할 수 있다. 국산화 핵심 기술 개발을 위하여 열 및 시스템 통합 설계에 의 해 천연가스 수증기 개질기를 제작하고 내부 열교환 구조에 따른 개질기의 성능을 평가하였다. 개발된 개질기는 개질온도 $720^{\circ}C$, 수증기 대 카본 비 2.7의 운전조건에서 $23Nm^3/h$ 이상의 수소 생산이 가능하였으며 73% 이상의 개질 효율을 나타내었다. 개발된 천연가스 수증기 개질기는 향후 수소 정제용 PSA(Pressure Swing Adsorption) 시스템과 연계하여 수소충전소 국산화 엔지니어링 설계 패키지 개발의 핵심 기 술로 사용할 계획이다.시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다 한다. 단위 전지 운전 온도 $130^{\circ}C$, 상대습도 37%의 운전 조건에서도 상당히 우수한 전지 성능을 보임에 따라 고온/저가습 조건에서 상용 Nafion 112 막보다 우수한 막 특성을 나타냄을 확인하였다.소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{

  • PDF

Studies on the varietal resistance to the rice stem borer, Chilo suppressalis WALKER. (I) Relation between the resistance and nitrogen and silica contents of host plant (이화명충에 대한 수도품종의 저항성에 관한 연구 (I) 품종간의 질소 및 규소함량이 저항성요소에 미치는 영향)

  • Shim J. W.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.51-54
    • /
    • 1965
  • The study was initiated to investigate the nature of varietal resistance to the rice stem borer (Chilo suppressalis WALKER), specially the rotation of the resistance to the silica and nitrogen content of the host Plants. 1. The body freight of the larvae, reared on the stem of the various varieties of rice plants, when weighed at the age of 25 days old, showed great variation, and ranged from 21.24 mgrs. to 45.77 mgrs. depending on the used varieties of tile rice plants. And generally the varieties of Indica types were showed greater body weight than that of Japonica types in this experiments. 2. The positive correlation coefficients of percent survivals to body weight, developement, oviposition preference and rate of damage to host plants were significant, and consequently the percent survival could be used as a criteria of resistance. 3. The content of silica in the host plants was significantly correlated with both the degree of boring on the leaf and attractovemess of larvae, and the total nitrogen content of plants showed significant positive correlation coefficient with larval attractivenes, but not significant with the degree of boring on the leaf. 4. Since the attractiveness and boring manner were significantyly correlated to resistance criteria of rice plant to the pest, it could be considered that the resistance is the results of chain reaction of the factors mentioned above.

  • PDF

A Study of Radiation Exposure in Proton Therapy Facility (양성자치료기 가속기 시설에서의 작업종사자의 방사선 피폭 연구)

  • Lee, Sang-Hoon;Shin, Dong-Ho;Yoon, Myong-Geun;Shin, Jung-Wook;Rah, Jeong-Eun;Kwak, Jung-Won;Park, Sung-Yong;Shin, Kyung-Hwan;Lee, Doo-Hyun;Ahn, Sung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Proton therapy facility, which is recently installed at National Cancer Center in Korea, generally produces a large amount of radiation near cyclotron due to the secondary particles and radioisotopes caused by collision between proton and nearby materials during the acceleration. Although the level of radiation by radioisotope decreases in length of time, radiation exposure problem still exists since workers are easily exposed by a low level of radiation for a long time due to their job assignment for maintenance or repair of the proton facility. In this paper, the working environment near cyclotron, where the highest radiation exposure is expected, was studied by measuring the degree of radiation and its duration for an appropriate level of protective action guide. To do this, we measured the radiation change in the graphite based energy degrader, the efficiency of transmitted beam and relative activation degree of the transmission beam line. The results showed that while the level of radiation exposure around cyclotron and beam line during the operation is much higher than the other radiation therapy facilities, the radiation exposure rate per year is under the limit recommended by the law showing 1~3 mSv/year.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.