• Title/Summary/Keyword: 방사선 차폐

Search Result 564, Processing Time 0.025 seconds

Shielding Calculations of Accelerator Facility for Medical Isotope Production using MCNPX Code (MCNPX 코드를 이용한 의료용 방사성동위원소 생산을 위한 가속기 시설의 방사선차폐 및 선량 계산)

  • Seo Kyu-Seok;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.210-214
    • /
    • 2004
  • Since production of radioactive isotope for using PET, a lot of neutrons were produced. The produced neutrons were mainly shielded by concrete facility. Secondary photons are generated and emitted from the concrete shielding wall of the PET cyclotron since the proton-generated neutrons are thermalized and absorbed in the concrete wall and emit secondary radiations, i.e., photons. This study calculated neutron dose and photon dose at outside of the accelerator facility using MCNPX code. As results of the calculation, total dose were calculated less than limited dose by law.

  • PDF

Fabrication and Evaluation of Radiation Shielding Property of Epoxy Resin-Type Neutron Shielding Materials (에폭시수지계 중성자 차폐재의 제조 및 방사선 차폐능 평가)

  • Cho, Soo-Haeng;Yoon, Jeong-Hyoun;Choi, Byung-I1;Do, Jae-Bum;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.77-83
    • /
    • 1997
  • Epoxy resin-type neutron shielding materials, KNS(Kaeri Neutron Shield)-101, KNS-102, and KNS-103 have been fabricated to be used in spent fuel shipping cask. The base material is epoxy resin, and polypropylene, aluminium hydroxide, and boron carbide are added. These shielding materials offer good fluidity at processing, which makes it possible to apply this resin shield to complicated geometric shapes such as shipping cask. The shielding property of these shielding materials for shipping cask for loading 28 PWR spent fuel assemblies has been evaluated. ANISN code is used to evaluate the shielding property of the shipping cask with the thickness of the three neutron shielding materials greater than 10 cm. As a result of analysis, the maximum calculated dose rate at the radial surface of the cask is determined to be $300{\mu}Sv/h$ and the maximum calculated dose rate at 100 cm from the cask is $97{\mu}Sv/h$. These dose rates remain within allowable values specified in related regulations.

  • PDF

Estimation of Fetal Dose during Radiation Therapy of Pregnant Patient (임산부의 방사선치료 시 태아선량 평가)

  • Jung, Chi-Hoon;Kim, Chan-Yong;Kim, Bo-Gyum;Seo, Suk-Jin;Yoo, Sook-Hyun;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • Purpose: To evaluate the effectiveness of a simple and practical shielding device to reduce the fetal dose for a pregnant patient undergoing radiation therapy of brain metastasis. Materials and Methods: The dose to the fetus was evaluated by simulating the treatments using the anthropomorphic phantom. The prescription dose at mid-brain is $300cGy{\times}10$ fractions with 6 MV photon with $18{\times}22cm^2$ field size. The additional shielding devices to reduce the fetal dose are a shielding wall, cerrobend plates and lead (Pb) sheets over acrylic bridge. Various points of measurement with off-field distance were detected by using ion-chamber (30, 40, 50, and 60 cm) with and without the shielding devices and TLD (30, 40, 50, 60, and 70 cm) only with the shielding devices. Results: The doses to the fetus without shielding were 3.20, 3.21, 1.44, 0.90 cGy at the distances of 30, 40, 50, and 60 cm from the treatment field edge. With shielding, the doses were reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy (70 cm). The total dose to the fetus was expected to be under 1 cGy during the entire treatment. Conclusion: The essential point during radiation therapy of pregnant patient would be minimizing the fetal dose. 10 cGy to 20 cGy is the threshold dose for fetal radiation effects. Our newly developed device reduced the fetal dose far below the safe level. Therefore, our additional shielding devices are useful and effective to reduce the fetal dose.

  • PDF

A Study of Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET-CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Kim, Bit-Na;Cho, Suk Won;Lee, Juyoung;Lyu, Kwang Yeul;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to 99mTc emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radio technologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radio technologists. Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8cm$, mean weight: $65.9{\pm}1.4kg$). Radiation was measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150, and 200 cm, respectively. Then, all the procedure was given with a portable radiation shielding on the location of head, chest, and abdomen at the distance of 100, 150, and 200 cm and transmittance was calculated. In 10 cm, head ($105.40{\mu}Sv/h$) was the highest and foot($15.85{\mu}Sv/h$) was the lowest. In 200 cm, head, chest, and abdomen showed similar. On head, the measured dose rates were $9.56{\mu}Sv/h$, $5.23{\mu}Sv/h$, and $3.40{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.24{\mu}Sv/h$, $1.67{\mu}Sv/h$, and $1.27{\mu}Sv/h$ in 100, 150, and 200 cm on head. On chest, the measured dose rates were $8.54{\mu}Sv/h$, $4.90{\mu}Sv/h$, $3.44{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.27{\mu}Sv/h$, $1.34{\mu}Sv/h$, and $1.13{\mu}Sv/h$ in 100, 150, and 200 cm on chest. On abdomen, the measured dose rates were $9.83{\mu}Sv/h$, $5.15{\mu}Sv/h$, and $3.18{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.60{\mu}Sv/h$, $1.75{\mu}Sv/h$, and $1.23{\mu}Sv/h$ in 100, 150, and 200 cm on abdomen. Transmittance was increased as the distance was expanded. As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the technologists.