• Title/Summary/Keyword: 방사선 작업종사자

Search Result 151, Processing Time 0.016 seconds

The Plan of Dose Reduction by Measuring and Evaluating Occupationally Exposed Dose in vivo Tests of Nuclear Medicine (핵의학 체내검사 업무 단계 별 피폭선량 측정 및 분석을 통한 피폭선량 감소 방안)

  • Kil, Sang-Hyeong;Lim, Yeong-Hyeon;Park, Kwang-Youl;Jo, Kyung-Nam;Kim, Jung-Hun;Oh, Ji-Eun;Lee, Sang-Hyup;Lee, Su-Jung;Jun, Ji-Tak;Jung, Eui-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2010
  • Purpose: It is to find the way to minimize occupationally exposed dose for workers in vivo tests in each working stage within the range of the working environment which does not ruin the examination and the performance efficiency. Materials and Methods: The process of the nuclear tests in vivo using a radioactive isotope consists of radioisotope distribution, a radioisotope injection ($^{99m}Tc$, $^{18}F$-FDG), and scanning and guiding patients. Using a measuring instrument of RadEye-G10 gamma survey meter (Thermo SCIENTIFIC), the exposure doses in each working stage are measured and evaluated. Before the radioisotope injection the patients are explained about the examination and educated about matters that require attention. It is to reduce the meeting time with the patients. In addition, workers are also educated about the outside exposure and have to put on the protected devices. When the radioisotope is injected to the patients the exposure doses are measured due to whether they are in the protected devices or not. It is also measured due to whether there are the explanation about the examination and the education about matters that require attention or not. The total exposure dose is visualized into the graph in using Microsoft office excel 2007. The difference of this doses are analyzed by wilcoxon signed ranks test in using SPSS (statistical package for the social science) program 12.0. In this case of p<0.01, this study is reliable in the statistics. Results: It was reliable in the statistics that the exposure dose of injecting $^{99m}Tc$-DPD 20 mCi in wearing the protected devices showed 88% smaller than the dose of injecting it without the protected devices. However, it was not reliable in the statistics that the exposure dose of injecting $^{18}F$-FDG 10 mCi with wearing protected devices had 26% decrease than without them. Training before injecting $^{99m}Tc$-DPD 20 mCi to patient made the exposure dose drop to 63% comparing with training after the injection. The dose of training before injecting $^{18}F$-FDG 10 mCi had 52% less then the training after the injection. Both of them were reliable in the statistics. Conclusion: In the examination of using the radioisotope $^{99m}Tc$, wearing the protected devices are more effective to reduce the exposure dose than without wearing them. In the case of using $^{18}F$-FDG, reducing meeting time with patients is more effective to drop the exposure dose. Therefore if we try to protect workers from radioactivity according to each radioisotope characteristic it could be more effective and active radiation shield from radioactivity.

  • PDF