• Title/Summary/Keyword: 방사선 선량

Search Result 3,560, Processing Time 0.052 seconds

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Changes in Exposure Dose and Image Quality due to Radiation Shielding in Pediatric Patients (소아 환자에서 방사선 차폐체로 인한 피폭선량과 화질의 변화)

  • Lee, Young-Hee;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.931-936
    • /
    • 2020
  • This study was conducted to observe the changes in radiation exposure dose and image quality of pediatric patients according to the presence and size of the gonadal shield when using the AEC system. X-ray equipment was used to measure the radiation exposure dose in the abdominal and gonads of the pediatric phantom when no shielding body was used and when three different sizes of shielding body were used, and SNR and CNR were measured through the obtained images. As a result of the study, the radiation exposure dose to the gonads decreased in proportion to the size of the radiation shield, but the radiation exposure dose to the abdomen was rather increased, and the image quality did not change. It is recommended to use a shield with a size optimized for the age, weight, and body size of the pediatric patient so as not to be overexposed by the increased radiation due to the radiation shield due to the use of the AEC System. For this purpose, information about the pediatric patient with the nurse It is believed that exchange is necessary.

전신방사선조사(TBI)시 다이오드측정기(Diode detector) 및 열형광선량계(TLD)를 이용하여 측정한 골조직 선량감쇠에 대한 고찰

  • 임현실;이정진;장인기;김완선
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.29 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • 목적 : 전신방사선조사(TBI)시 균등한 선량을 조사할 목적으로 사용되는 각 신체부위별 보상체(compensator) 두께의 결정은 열형광선량계(TLD)를 이용하여 표면선량(surface dose)을 측정하고, 심부선량(depth dose)으로 환산하는 방법을 주로 이용한다. 그러나 이와 같은 방법은 골(bone) 조직에 대한 선량감쇠(dose attenuation)의 영향이 고려되지 않아 신체중심부에서의 정확한 심부선량을 알 수가 없다. 이에 본 연구

  • PDF

방사선 수술시 자동적인 선량분포의 최적화를 위한 예비 연구

  • 최경식;오승종;서태석;이형구;최보영
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.38-38
    • /
    • 2003
  • 목적 : 방사선 수술의 목적은 병소에 최대한의 방사선을 조사하고, 주위의 정상조직에는 가능한 적은 양의 방사선을 조사하는 것이다. 이러한 목적을 만족시키기 위해 방사선 수술계획자는 계획시 isocenter의 위치와 개수, 콜리메이터 크기를 변화시켜 가며, 주어진 병소에 맞는 선량분포를 획득해 방사선 수술효과를 최대화시키는 수술계획을 수립한다. 본 연구에서는 다양한 모양의 병소에 대해 자동적으로 isocenter를 위치시켜 수술 계획시 도움이 될 수 있도록 임의의 병소 모델들에 대해 위의 변수들을 변화시켜 가며 얻어지는 선량분포를 비교 분석하였다. 방법 : 본 연구에서는 임의로 정의한 계산 영역내에 다면체를 병소로 가정하여 연구를 수행하였다. 방사선 수술시 하나의 isocenter에서 얻어지는 선량분포는 구형으로 근사할 수 있으므로 하나의 isocenter를 구로 근사하여, 각 병소 모델 내에 콜리메이터 크기를 변화해가며 가능한 많은 영역을 포함하도록 isocenter를 배치시켰다. 이후 구형선량모델을 사용해 선량분포를 획득하여 병소와 정상조직간의 DVH(Dose Volume histogram)와 각 병소 모델에 대한 통일 평면상의 선량분포를 비교 분석하였다. 결과 ; 임의의 다양한 종양 모델에 대한 50%의 등선량 곡선내에서 세 가지의 빔관련 변수들을 변화시킨 결과, 종양이 없는 정상 조직에서는 선량분포가 극히 낮았으며, 콜리메이터의 크기에 따른 isocenter 의 개수가 변화하는 것을 확인할 수 있었고, 이 경우 한 종양모델에서의 깊이에 따른 선량 분포는 크게 차이가 나지 않았다. 그리고, isocenter의 개수가 변화함에 따라 선량곡선이 변하는 것을 확인할 수 있었다. 결론 : 빔관련 변수인 콜리메이터 크기, isocenter 개수, 거리등은 어느 일정 정도를 넘기면, 병소내 선량 분포에 크게 기여하지 않는다는 점을 감안하여 빔관련 변수들을 최소로 고려하므로써 계획시 소모되는 시간 과 노력을 많이 줄일 수 있을 것이며, 또한 각 병소 모델에 대한 최적의 구형선량모델에서 공통적인 규칙성을 찾는 것과 실제 병소의 모양을 간단한 모양으로 근사화 시킨다면 자동적 선량모델을 이루는데 많은 도움이 되고, 이로 인해 효율적인 치료계획작업이 이루어질 것이라 사료된다.

  • PDF

A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital (방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, radiation exposure doses were measured in the course of clinical practice of radiation workers, radiological technologists in the radiation-related worker group, and preliminary-radiological technologists who were classified as frequent visitors. Radiological technologists who worked in the radiation area of C University Hospital in Incheon for a year from January 2021 and 121 students who completed clinical practice at the same medical institution from July 1 to August 31 were the subjects of the study. The nominal risk factor based on ICRP 103 was used to evaluate the probability of side effects due to the exposure dose to the lungs, which are organs at risk of damage due to radiation exposure dose. During the clinical practice period, radiology students, who were classified as frequent visitors, had a surface dose of 0.98 ± 0.14 mSv and a deep dose of 0.93 ± 0.14 mSv. In other words, 6.7 per 1,000,000 for shallow dose and 6.4 per 1,000,000 for deep dose were found to have side effects due to exposure to the lungs. This is a value in terms of exposure dose in one year. Considering that the radiation (science) education course is 3 or 4 years, systematic management and attention to prospective radiation workers who are going to clinical practice are required, and the stochastic effect of radiation In relation to this, it is considered that it will be used as basic data for radiation safety management.