• Title/Summary/Keyword: 방사선입체조형치료

Search Result 103, Processing Time 0.023 seconds

Clinical Experience of Three Dimensional Conformal Radiation Therapy for Non-Small Cell Lung Cancer (비소세포성 폐암에서 3차원 입체조형 방사선 치료 성적)

  • Choi Eun Kyung;Lee Byong Yong;Kang One Chul;Nho Young Ju;Chung Weon Kuu;Ahn Seung Do;Kim Jong Hoon;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • Purpose : This prospective study has been conducted to assess the value of three dimensional conformal radiation therapy (3DCRT) for lung cancer and to determine its potential advantage over current treatment approaches. Specific aims of this study were to 1) find the most ideal 3DCRT technique 2) establish the maximum tolerance dose that can be delivered with 3DCRT and 3) identify patients at risk for development of radiation pneumonitis. Materials and Methods : Beginning in Nov. 1994, 95 patients with inoperable non-small cell lung cancer (stage I; 4, stage II; 1, stage IIIa; 14, stage IIIb; 76) were entered onto this 3D conformal trial Areas of known disease and elective nodal areas were initially treated to 45 Gy and then using 3DCRT technique 65 to 70 Gy of total dose were delivered to the gross disease. Sixty nine patients received 65 Gy of total dose and 26 received 70 Gy Seventy eight patients (82.1$\%$) also received concurrent MVP chemotherapy. 3DCRT plans were compared with 2D plans to assess the adequacy of dose delivery to target volume, dose volume histograms for normal tissue, and normal tissue complication Probabilities (NTCP). Results : Most of plans (78/95) were composed of non-coplanar multiple (4-8) fields. Coplanar segmented conformal therapy was used in 17 pateints, choosing the proper gantry angle which minimize normal lung exposure in each segment. 3DCRT gave the full dose to nearly 100$\%$ of the gross disease target volume in all patients. The mean NTCP for ipsilateral lung with 3DCRT (range; 0.17-0.43) was 68$\%$ of the mean NTCP with 2D treatment planning (range; 0.27-0.66). DVH analysis for heart showed that irradiated volume of heart could be significantly reduced by non-coplanar 3D approach especially in the case of left lower lobe lesion. Of 95 patients evaluable for response, 75 (79$\%$), showed major response including 25 (26$\%$) with complete responses and 50 (53$\%$) with partial responses. One and two rear overall survivals of stage III patients were 62.6$\%$ and 35.2$\%$ respectively. Twenty percent (19/95) of patients had pneumonitis; Eight patients had grade 1 pneumonitis and 11 other patients had grade 2. Comparison of the average of NTCP for lung showed a significant difference between patients with and without radiation pneumonitis. Average NTCP for Patients without complication was 62$\%$ of those with complications. Conclusions : This study showed that non-coplanar multiple fields (4-8) may be one of the ideal plans for 3DCRT for lung cancer. It also suggested that 3DCRT may provide superior delivery of high dose radiation with reduced risk to normal tissue and that NTCP can be used as a guideline for the dose escalation.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis (간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구)

  • Lee Sang-wook;Kim Gwi Eon;Chung Kap Soo;Lee Chang Geol;Seong Jinsil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.455-467
    • /
    • 1998
  • Purpose : To evaluate influences associated with radiation treatment planning obtained with the patient breathing freely. Materials and Methods : We compared reduction or elimination of planning target volume (PTV) margins with 2-D conventional plan with inclusion of PTV margins associated with breathing with 3-D conformal therapy. The respiratory non gated 3-D conformal treatment plans were compared with respiratory gated conventional 2-D plans in 4 patients with hepatocellular carcinomas. Isodose distribution, dose statistics, and dose volume histogram (DVH) of PTVs were used to evaluate differences between respiratory gated conventional 2-D plans and respiratory non gated 3-D conformal treatment plans. In addition. the risk of radiation exposure of surrounding normal liver and organs are evaluated by means of DVH and normal tissue complication probabilities (NTCPs). Results : The vertical movement of liver ranged 2-3 cm in all patients. We found no difference between respiratory gated 2-D plans and 3-D conformal treatment plans with the patients breathing freely. Treatment planning using DVH analysis of PTV and the normal liver was used for all patients. DVH and calculated NTCP showed no difference in respiratory gated 2-D plans and respiratory non gated 3-D conformal treatment plans. Conclusion : Respiratory gated radiation therapy was very important in hepatic tumors because radiation induced hepatitis was dependent on remaining normal liver volume. Further investigational studies for respiratory gated radiation.

  • PDF

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Study on Tumor Control Probability and Normal Tissue Complication Probability in 3D Conformal Radiotherapy (방사선 입체조형치료에 대한 종양치유확율과 정상조직손상확율에 관한 연구)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.227-245
    • /
    • 1998
  • A most appropriate model of 3-D conformal radiotherapy has been induced by clinical evaluation and animal study, and therapeutic gains were evaluated by numerical equation of tumor control probability(TCP) and normal tissue complication probability (NTCP). The radiation dose to the tumor and the adjacent normal organs was accurately evaluated and compared using the dose volume histogram(DVH). The TCP and NTCP was derived from the distribution of given dosage and irradiated volume, and these numbers were used as the biological index for the assessment of the treatment effects. Ten patients with liver disease have been evaluated and 3 dogs were sacrificed for this study. Based on the 3-D images of the tumor and adjacent organs, the optimum radiation dose and the projection direction which could maximize the radiation effect while minimizing the effects to the adjacent organs could be decided. 3). The most effective collimation for the normal adjacent organs was made through the beams eye view with the use of multileaf collimator. When the dose was increased from 50Gy to 70Gy, the TCP for the conventional 2-port radiation and the 5-port multidimensional therapy was 0.982 and 0.995 respectively, while the NTCP was 0.725 and 0.142 respectively, suggesting that the 3-D conformal radiotherapy might be the appropriate therapy to apply sufficient radiation dose to the tumor while minimizing the damages to the normal areas of the liver. Positive correlation was observed between the NTCP and the actual complication of the normal liver in the animal study. The present study suggest that the use of 3-D conformal radiotherapy and the application of the mathematical models of TCP and NTCP may provide the improvements in the treatment of hepatoma with enhanced results.

  • PDF

Evaluation of Xerostomia Following 3 Dimensional Conformal Radiotherapy for Nasopharyngeal Cancer Patients (3차원 입체조형 방사선치료를 시행받은 코인두암 환자에서의 구강건조증 분석)

  • Park Young-Je;Park Won;Ju Sang-Gyu;Nam Hee-Rim;Oh Dong-Ryul;Park Hee-Chul;Ahn Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.81-87
    • /
    • 2006
  • Purose: This study is to evaluate the xerostomia following 3-dimensional conformal radiation therapy (3D CRT) in nasopharynx cancer patients using the xerostomia questionnaire score (XQS). Materials and Methods: Questionnaire study was done on 51 patients with nasopharynx cancer who received 3D CRT from Dec. 2000 to Aug. 2005. 3D CRT technique is based on 'serial shrinking field' concept by 3 times of computed tomography (CT) simulation. Total target dose to the primary tumor was 72 Gy with 1.8 Gy daily fractions. Xerostomia was assessed with 4-questions XQS, and the associations between XQS and time elapsed after RT, age, sex, stage, concurrent chemotherapy, and parotid dose were analyzed. Results: Concurrent chemotherapy was given to 40 patients and RT alone was given to 11 patients. The median time elapsed after 3D CRT was 20 ($1{\sim}58$) months and the mean XQS of all 51 patients was $8.4{\pm}1.9\;(6{\sim}14)$. XQS continuously and significantly decreased over time after 3D CRT ($X^2$=-0.484, p<0.05). There was no significant difference in XQS according to sex, age, and stag. However, XQS of concurrent chemotherapy patients was significantly higher than RT alone patients (P=0.001). XQS of patients receiving total mean parotid dose ${\ge}35 Gy$ was significantly higher than <35 Gy (p=0.05). Decreasing tendency of XQS over time after 3D CRT was observed. Concurrent chemotherapy and total mean parotid dose ${\ge}35 Gy$ were suggested to adversely affect radiation-induced xerostomia.

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

Design for Radiotherapy Room with High Density Shielding Block (고 강도 차폐벽돌을 이용한 방사선치료실의 차폐설계)

  • Suh Chang Ok;Kim Gwi Eon;Chu Sung Sil
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • According to developing high energy linear accelerators and treatment methods, like (3 dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), many radiotherapy centers are replacing older linear accelerators with new higher technical machines. This often presents a shielding problem as the designed shield for the existing rooms is not adequate for the higher technical machines. Additional shielding in limited existing space becomes necessary. We are replacing older brachytherapy room with new higher technical linear accelerator for IMRT. This room is not adequate for the IMRT machine without additional shielding design. The logical development of optimum structural shielding designs with concrete and high density shielding blocks are presented. We obtained following results by comparison between the pre-calculating values and actual survey of completed LINAC installation. High density shielding blocks have more powerful radiation protection about 2 times.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

A Comparative Study on the Head and Neck Radiation Therapy for Dynamic Conformal Arc Therapy and Volumetric Modulated Arc Therapy (두경부 방사선 치료 시 입체조형동적회전조사치료와 용적변조회전조사치료에 관한 연구)

  • Kim, Deok-Ki;Choi, CheonWoong;Choi, Jae-hyock;Won, Hui-su;Park, Cheol-soo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.208-218
    • /
    • 2015
  • Recently, radiation therapy is used in the CT existing conventional two-dimensional radiation image, and set the size and location of the tumor in a manner that the image is going to change the treatment plan. After using the simulation using CT, radiation therapy it is four-dimensional or three-dimensional treatment made possible. and radiation therapy became the more effective ever before. High technology radiation therapy such as the treatment of SRS,IMRT, IGRT, SBRT, is a need to try contemplating the possibility to apply appropriate analysis and situation, so it has its own characteristics. and then it is believed that it is necessary to analyze and try it worries the proper applicability of the situation. The configuration of the various treatment that is applicable in many hospitals is necessary to try to determine how to practically apply the patients. Critical organs surrounding tumor give a small dose to avoid side effects and then the tumor has the therapeutic effect by providing a larger dose than before the radiation treatment.