• Title/Summary/Keyword: 방부목재

Search Result 78, Processing Time 0.026 seconds

Environmental Toxicity of ACQ-Treated Wood Based on the Fish Acute Test (어류급성독성 시험에 의한 ACQ 방부목재의 환경 독성)

  • Woo, Ji-Keun;Kim, Du-Won;Kim, Sung-Kyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.107-115
    • /
    • 2011
  • The purpose of the study is to analyze the environmental characteristics of fish acute toxicity that is dependent on the harmfulness of ACQ (Alkaline Copper Quat)-Treated Wood and Oryzias latipes mortality in a comprehensive way, provide objective verification method on the eco-toxicity and environment-friendliness of landscaping materials and methods, and utilize it as a basic datum for evaluation criteria. The main results are summarized as follows : 1. As a result of analysis on the harmfulness characteristics, each experimental plot showed different values respectively. In particular, it has been found that in proportion to the volume of testing materials, COD and Cu increases at a constant rate, compared to the input water. In the plot C with three testing materials, COD increased 67 times more than that of the input water, and Cu increased up to 12.36mg/L. 2. In case of fish toxicity, plot C, B, A all showed a mortality rate of 100%, indicating that fish toxicity is strong. In particular, the mortality rate of each plot within the initial time of one and a half hour showed clearly, which suggests that the fish toxicity is influenced by the increased concentration of hazardous substances depending on the volume ratio of testing materials. 3. As a result of comparison and analysis on the harmfulness and fish toxicity, the harmfulness showed different values on each experimental plot but, we found that the changing rate of values of toxicity of COD and Cu is mutually similar to that of mortality in the initial hour according to the experiment of fish toxicity, which shows that COD and Cu are major factors to increase fish toxicity.

A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment (한국 전통 적색광물안료 울릉도석간주의 기능성 연구)

  • Do, Jin-Young;Kim, Soo-Jin;Lee, Sang-Jin;Ahn, Byung-Chan;Yun, Seong-Chul;Kim, Kwang-Jong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The main compositions of "Seokganju", a Korean traditional red mineral pigment, are iron oxides. To investigate its mineralogical and functional properties, we had got its ore from Juto cave in Ulreoung island, which was a famous field of it in Korean documents. The ore occurs as a paleosol between the olivine basalt and amphibole trachyte in discontinuously. It is reddish brown and yellowish brown and consists mainly of clay minerals with minor debris. Its reddish and yellowish brown color are due to the hematite and ferrihydrate, respectively. These iron oxides are precipitated as ferrihydrate from the ferrous water in the paleosol and partly changed to hematite. The color reproduced in timber by using seokganju pigment with traditional tools and methods is similar to that in heritage building. The moistureproofing and fire resistance of Ulreungdo seokganju is far better than that of artificial seokganju. Moreover, the combustion tests show that the artificial seokganju promote the ignition and combustion of the timber. Ulreungdo seokganju is regarded as a pigment with fungicidal efficacy because growth of two wood decay fungi (cov. and typ.) are inhibited in solid medium with it.

Effects of Polyethylene Glycol Treatment for Improvement of Preservative Penetration and Prevention of Drying Check of Preservative Treated Round Post (방부처리 원주가공재의 방부제 침윤도 향상 및 건조 할렬 방지를 위한 폴리에틸렌 글리콜 처리 효과)

  • Lee, Jong-Shin;Yoon, Sun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.27-32
    • /
    • 2002
  • We investigated the effect of polyethylene glycol(PEG) treatment of preservative treated green japanese cedar(Cryptomeria japonica) round posts on their preservative penetration and check formation during the air drying. The round rods were dip-treated in 10% preservative solution of Basilit CFK for 1 day, followed by application(3, 5, and 10 times) with 50% PEG-400 solution, and then dried for 30 days under natural conditions. The rate of preservative penetration into sapwood was a low by 23.2% without PEG treatment, whereas that was a high by about 51.2~64.5% with PEG treatment. From these results, it was assumed that PEG played an affirmative role in the penetration of preservative components loaded onto the surface of round rods by dipping. During the air drying, the formation of drying checks decreased significantly with increasing application times of PEG. Even though some drying checks in PEG treated rods were developed, the number and size of checks was reduced remarkably by PEG treatment. After 2 months of outdoor exposure, PEG treatment failed to reduce checking in preservative-treated rods whereas finishing of polyurethane resin lacquer after PEG treatment was significantly effective in preventing check development.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Preliminary Study of the Leaching Resistance of Boron from Borate Treated Wood by the Dual Treatment with Water-Repellent Preservative and Methyl Metacrylate (방부성(防腐性) 발수제(撥水劑)와 methyl metacrylate 이중처리(二重處理)에 의(依)한 붕소화합물(硼素化合物) 처리재(處理材)로부터 붕소(硼素)의 용탈(溶脫) 저항성(抵抗性)에 관(關)한 기초연구(基礎硏究))

  • Kim, Gyu-Hyeok;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.13-18
    • /
    • 1994
  • Sapwood samples of pitch pine were treated with disodium octaborate alone by dip-diffusion, or in combination with water-repellent preservative(WRP) and methyl metacrylate(MMA). Treated samples were subjected to an accelerated leaching test for determining the improvement of leaching resistance and to soft rot and mold tests for evaluating the increase in bioefficacy, due to the addition of WRP and MMA applied as a second treatment. The addition of WRP and MMA retarded leaching of boron to some extent from treated samples and this retardation can be explained by improved water repellency of WRP and MMA treated samples. Borate /WRP and borate /MMA systems will not qualify borate treated wood for ground and fresh water contact use but may improve performance of borate treated wood in above-ground applications not subjected to continuous wetting conditions. Bioefficacy against soft rot fungi and mold fungi was improved by a second treatment with WRP. However, improvement in the performance of borate /MMA systems was not observed. Considering improvement in both resistance of leaching and bioefficacy against micro fungi by the treatment of WRP and MMA, simultaneously, the dual treatment of borate treated wood by MMA containing co-biocides might be believed as an ideal treatment system.

  • PDF

Pressure Treatment of Japanese Red Pine, Japanese Larch, and Ezo Spruce Round Posts with CCA (소나무, 낙엽송, 북양가문비나무 원주가공재의 CCA 가압처리)

  • Kim, Gyu-Hyeok;Kim, Jae-Jin;Kim, Hyung-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • This study was designed to investigate the effect of treatment variables on CCA treatment of Japanese red pine (Pinus densiflora), Japanese larch (Larix leptolepis), and ezo spruce (Picea jezoensis) round posts. Variables included were duration of initial vacuum (30, 45, or 60 minutes) and maximum pressure applied (8.5, 10.5, or 14.0 kg/$cm^2$), and maximum pressure was maintained until refusal point was reached. Regardless of wood species, extending the duration of initial vacuum more than 30 minutes did not affect treatability. Increasing pressure did not affect preservative penetration; however, preservative retention was affected by pressure levels, particularly at higher level (14.0 kg/$cm^2$). Preservative penetration depth of Japanese red pine met a minimum requirement specified by Notification of Korean Forestry Administration (No. 1999-8) for hazard class H5 of CCA-treated wood. Penetration of preservative in both Japanese larch and ezo spruce was not deep because of shallow sapwood thickness of these species, so pretreatment such as incising should be considered if these species are treated with preservatives. Although retention in Japanese red pine was not significantly increased even with 14.0 kg/$cm^2$, that of refractory Japanese larch and ezo spruce was significantly increased with the application of 14.0 kg/$cm^2$. Effect of treatment variables on refusal time was unclear; however, it is cleared that the refusal time was shortened with the increase in sapwood thickness.

  • PDF

Characteristics of Chromium, Copper, and Arsenic Leaching from CCA-Treated Wood (CCA 방부처리 목재로부터 크롬, 구리 및 비소의 용탈 특성)

  • Kim, He-Kap;Kim, Dong-Jin
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • A laboratory experiment was conducted to study the characteristics of leaching of Cr, Cu, and As from chromated topper arsenate (CCA)-treated wood. The wood species tested was hemlock spruce ($10\;cm\;{\times}\;10\;cm\;{\times}\;10\;cm\;tube$). The leaching experiment was conducted over 60 days using I L of leachants whose pHs were adjusted to 2.0, 3.7, and 1.6, respectively with nitric acid, and also using lake water, according to the OECD guideline. Each leachate was analyzed for Cr and Cu using flame-AAS, and for As using vapor generation-AAS. Three metals were loathed at the highest levels at pH 2.0 but almost at similar levels at the other conditions. Cumulative quantifies over 60 days of a leaching period were in order of As>Cu>Cr. As was predicted to leach with an increase in flux over a 10 year period, while Cr and Cu fluxes were predicted to decrease with time. This result suggest that arsenic can pose a health risk to humans over a long period of time, when CCA-treated wood is used for building facilities (e.g., playgrounds, residential purposes, etc.) with which humans frequently contact.

Formation and Preservative Effectiveness of Water-Insoluble Copper Compound in Wood Treated with Copper Sulfate and Sodium Carbonate (황산구리와 탄산나트륨 처리 목재 내의 물불용성 구리화합물의 생성과 방부효력)

  • Kim, Jin-Kyung;Lee, Jong-Shin
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.358-364
    • /
    • 2008
  • Wood-inorganic material composite (WIC) was prepared by impregnating wood with copper sulfate ($CuSO_4\;5H_2O$) solution and by immersed wood in sodium carbonate($Na_2CO_3$) solution in order to introduce insoluble copper compounds {copper carbonate hydroxide, $CuCO_3\;Cu(OH)_2$} into the wood to give fungicidal effects in treated-wood. The weight percent gains (WPGs) of treated wood reached maximum value by impregnation of 20% copper sulfate solution and immersion in about 15% sodium carbonate solution for 24 hrs. Inorganic substances were present mainly in the lumina and cross-field pitting of tracheides. These substances were proved to be the insoluble copper carbonate hydroxide against water by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDXA). The treated specimens showed high preservative effectiveness because the weight losses were hardly occurred by the fungi degradation test.

  • PDF

Physical and Mechanical Properties of Heat-treated Domestic Yellow Poplar (백합나무 열처리재의 물리 및 역학적 특성)

  • Kim, Kwang-Mo;Park, Jung-Hwan;Park, Byoung-Soo;Son, Dong-Won;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • Recently, yellow poplar (Liriodendron tulipifera L.) is getting attention in Korea due to the fast growing and high yield and quality of lumber. But, it is thought that the color difference between heartwood and sapwood may restrict the practical use of it. This study was aimed to enhance the value of yellow poplar lumber by the color control using high temperature heat-treatment, which had been tried for domestic cedar (Kim et al., 2009). The material properties including surface color of yellow poplar lumber were evaluated according to heat treatment conditions. The difference of color between sapwood and heartwood could be reduced by heat treatment at a temperature about $200^{\circ}C$. Long heating time was more effective in reducing the difference. The Equilibrium Moisture Content (EMC) of heat-treated wood was as low as 50 percent of the control. The result obviously indicates that heat-treated wood is more dimensionally stable in the change of moisture condition. The durability against wood rotting fungi also increased by the heat-treated, but it was not so effective as the case of cedar. The changes of mechanical properties of heat-treated yellow poplar were very similar to that of heat-treated cedar. In order to develop new use of heat-treated yellow poplar, the changes of mechanical properties should be considered. There were no significant changes in microscopic structure which may cause changes in mechanical properties. Further study of heat-treated wood is needed to scrutinize the causes of changes of material properties.

Physical and Mechanical Properties of Heat-treated Domestic Cedar (삼나무 열처리재의 물리 및 역학적 특성)

  • Kim, Kwang-Mo;Park, Jung-Hwan;Park, Byoung-Soo;Son, Dong-Won;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.330-339
    • /
    • 2009
  • The material properties of Cedar (Cryptomeria japonica) were evaluated according to heat treatment conditions. The special focus was made on the color control of cedar wood by heat treatment. The difference of color between sapwood and heartwood could be reduced by heat treatment at a temperature above $170^{\circ}C$. Long heating time was more effective in reducing the difference. The Equilibrium Moisture Content (EMC) of heat-treated wood was as low as 50 percent. The result obviously indicates that heat-treated wood is more dimensionally stable in the change of moisture condition than the control. The heat-treated wood was also effective in increasing the durability against wood rotting fungi. However, more study is required to develop heat treatment as an environmentally-friendly technology for wood preservation without chemical. The mechanical properties of heat-treated wood showed relatively higher performance than the control in general. Meanwhile the dramatic decrease in impact bending stress due to the loss of ductility may limit uses of heat-treated wood in certain cases. There were no significant changes in microscopic structure which may cause changes in mechanical properties. Further study on the chemical analysis of heat-treated wood is needed to scrutinize the causes of changes of material properties.