• 제목/요약/키워드: 밝기 온도

검색결과 142건 처리시간 0.016초

G-band (183 GHz) 수증기 라디오미터의 가강수량 특성과 품질 관리 (Characteristics and Quality Control of Precipitable Water Vapor Measured by G-band (183 GHz) Water Vapor Radiometer)

  • 김민성;구태영;김지형;정승필;김부요;권병혁;이광재;강명훈;양지휘;이철규
    • 한국지구과학회지
    • /
    • 제43권2호
    • /
    • pp.239-252
    • /
    • 2022
  • 국내에서 처음으로 도입한 기상 항공기에 탑재한 G-band 수증기 라디오미터(GVR) 관측으로 산출된 가강수량의 품질 관리 방법을 제안하였다. GVR 빔의 연직 최단 경로 자료만 사용하기 위해 기상 항공기의 자세 정보(pitch와 roll 각도)를 활용하였고, GVR 가강수량이 20 mm 이상의 자료를 제거하는 방법을 품질 관리에 적용하였다. GVR 가강수량이 20 mm 이상으로 증가할 때, 웜로드(Warm load) 평균 전력과 스카이로드(Sky load) 평균 전력의 차이가 0에 가까이 수렴하는 특성을 확인하였고, 이는 COMS (Communication, Ocean and Meteorological Satellite)의 운형, 운정고도, 운량자료와 구름통합관측기기(CCP), 강수입자 측정기(PIP)로 측정된 강수 및 구름 입자 크기로 확인한 하층운과 중층운에 의한 높은 밝기온도 때문으로 판단된다. 구름 많은 날의 품질 관리 적용 전후의 GVR 가강수량을 LDAPS (Local Data Assimilation and Prediction System) 가강수량과 정량적으로 비교하였는데 RMSD (Root Mean Square Difference)는 2.9 mm에서 1.8 mm로 감소하였고, KLAPS (Korea Local Analysis and Prediction System)와의 RMSD는 5.4 mm에서 4.3 mm로 감소하여 향상된 정확도를 보였다. 또한 품질 관리를 적용한 GVR 가강수량과 드롭존데 가강수량 관측 자료을 활용하여 COMS 가강수량과도 정량적으로 비교평가함으로써 본 연구에서 제안한 GVR 가강수량의 품질 관리 방법의 유효성을 확인하였다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.