• Title/Summary/Keyword: 발포 금속

Search Result 42, Processing Time 0.023 seconds

로터스 금속의 제조 기술 및 응용

  • Hyeon, Seung-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.57.1-57.1
    • /
    • 2012
  • 금속을 용해 응고시킬 때 생성되는 소위, 주조 결함이나 소결금속 내의 기공은 재료의 성능이나 강도를 현저하게 낮추는 결함으로서 예전부터 기피되어 왔다. 또한, 재료공정에 있어서도 여하의 기공이나 기포가 없는 치밀한 고강도 및 고기능성 재료를 개발하는 것에 최대한의 주의와 관심을 기울여 왔다. 반면에 자연계의 천연물이나 인공물을 둘러보면 그 대부분이 다공질임을 쉽게 눈치챌 수 있다. 예를 들어 목재, 지엽 등의 생물을 시작해서 콘크리트 등의 인공물, 우리 체내의 뼈도 전형적인 다공질구조로 구성되어 있다. 이러한 구조로부터 재료의 재질제어 이외에 구조제어라는 새로운 어프로치를 고려할 수 있고, 최근 들어, 금속재료에 있어서도 이러한 다공질 구조에 관한 연구가 활성화되어 충격흡수재, 생체재료, 베어링재료 등의 다양한 응용이 전개되고 있다. 원주상의 방향성 기공을 갖는 로터스 금속의 제조 원리는 용융금속의 높은 가스용해도와 고체금속의 낮은 가스고용도의 차이를 이용하여 응고할 때 고용되지 않는 가스원자가 기포를 형성시키는 것이다. 수소용해도는 모든 금속에 있어서 온도상승에 따라 증가하지만 융점에 있어서 용해도의 불연속적 증가를 나타내며 응고할 때 고액계면에서 다량의 가스를 방출하고 기공 생성을 야기한다. 특히, 고 액상에 있어서 수소용해도 차가 큰 마그네슘, 니켈, 철, 동 등은 기포를 생성하기 쉽다. 또한 기공의 배열구조를 제어하기 위해 일방향응고법를 이용하여 기공에 방향성을 부여한다. 외관상 기공구조가 연근뿌리를 닮은 것으로 부터 로터스 금속이라는 명칭이 널리 알려져 있다. 이와 같은 제조방법에 의해 로터스 금속은 기공 방향, 기공크기, 기공률을 자유롭게 제어할 수 있고 우수한 기계적 성질이 기존의 발포금속, 소결금속과 전혀 다른 특성을 가지고 있다. 이러한 기공구조는 용해온도, 응고속도, 분위기 가스압, 불활성가스와의 혼합체적비 등의 제어를 통해서 조절할 수 있다. 이와 같이 제조한 방향성 다공질금속은 BT (인플란트, 생체적합성, 저탄성, 경량), ST (초음속기엔진부품, 경량), IT (고성능수냉모듈), ET(고온촉매, 필터)의 분야로의 응용을 기대한다.

  • PDF

The Simulation about the Air Flow and Pressure Drop inside the Metal Foam (발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Jin, Mei-Hua;Jang, Seok-Jun;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

Mechanical Characteristics Analysis of Structural Light-weight Aluminum Foam (구조용 경량 알루미늄 발포금속의 기계적 특성 연구 분석)

  • Ma, Jeong Beom;Lee, Jeong Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Aluminum foam is one of the representative light-weight materials. In this study we analyzed the mechanical properties of the aluminum foam structures. Aluminum materials with pores have novel mechanical characteristics such as flame retardancy, damping, and energy absorption which are superior to those of polymer foam. Furthermore its reusable properties draw considerable interests. General properties, energy and acoustic absorption will be investigated and future research issues such as binding techniques of foam materials with other structures will be discussed through foam application examples.

Characterization of the Ni and Ni-Cr Porous Metal Reinforced AC4C Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 Ni, Ni-Cr 다공질 발포금속 강화 AC4C 합금기 복합재료에 관한 연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 2005
  • The microstructure and mechanical property of the Ni and Ni-Cr porous metal reinforced AC4C matrix composites fabricated by squeeze casting were investigated. In this study Ni, Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition shows that atsolutionizing temperature of above $520^{\circ}C$, the interfacial reaction zone increases proportionally with heat treatment time and the reaction products formed by interfacial reactions are mainly composed by $Al_{3}Ni$ and $Al_{3}Ni_{2}$ phases.

Hot Issue - 포장재재질.구조개선 기준 및 시험방법

  • (사)한국포장협회
    • The monthly packaging world
    • /
    • s.266
    • /
    • pp.90-105
    • /
    • 2015
  • '포장재 재질 구조개선 제도'란 "자원의 절약과 재활용 촉진에 관한 법률" 제9조의2에 의거하여 재활용의무생산자가 포장재 설계 생산 단계부터 재활용성을 고려하여 재질 구조를 재활용이 쉽도록 개선하기 위한 제도이다. 이와 관련하여 "포장재 재질 구조 개선 등에 관한 기준"(환경부 고시 제2014-123호) 및 "포장재 재질 구조 개선 제도 운영지침"(환경부 예규 제534호)이 제정 고시되었으며, (사)한국포장재재활용사업공제조합은 환경부 예규 제13조에 따라 포장재 재질 구조 개선 제도 운영기관으로 지정되었다. 이와 관련해 (사)한국포장재재활용사업공제조합은 재질 구조개선 신청 포장재에 대한 객관적인 데이터를 확보하여 평가심의위원회에 정확한 근거자료를 제공하기 위해 포장재 재질 구조 시험방법을 제시했다. 본 고에서는 약 8회에 걸쳐, 포장재별 재질 구조개선 기준 및 시험방법을 연재할 계획이며 이번 호에서는'금속캔 포장재'와'발포합성수지 포장재'에 대하여 살펴본다.

  • PDF

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams (Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Jeong, Seung-Reung;Jeong, Min-Jae;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

Fabrication of Aluminum Foams for High Profit Recycling of Aluminum Can Scraps (알루미늄 캔 스크랩의 고품위 재활용을 위한 발포금속의 제조)

  • Ha, Won;Kim, Shae-Kwang;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.203-208
    • /
    • 2005
  • The main emphasis of this study is to optimize the process variables for manufacturing aluminum foam materials by direct foaming of remelted aluminum scraps. Aluminum foams were fabricated from two different raw materials, pure aluminum and used beverage cans. For both cases, $TiH_{2}$ was used as a foaming agent. Calcium was added as a thickener for the foaming of pure aluminum and no thickener was added for that of used beverage Cans because the pre-existing oxides of the used beverage cans are used as a thickener. Calcium and $TiH_{2}$ content varies from 0.5wt.% to 2.0wt.% and from 0.5wt.% to 1.5wt.%, respectively. The processing conditions, such as the effect of calcium on the melt viscosity, foaming temperature, and the optimum amount of the foaming agent with regard to the melt viscosity were discussed.

The Effect of Zr Addition on AM50 Mg Alloys Foam Metals (AM50 Mg합금 발포금속의 제조와 지르코늄 첨가 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.217-223
    • /
    • 2010
  • Foamed metal has become an attractive material, which has unique physical, thermal, acoustic, damping and mechanical properties, because large amount of pores are distributed in the metal matrix. Therefore, metal foam can be used for the light weight application in automotive, locomotive, aerospace fields. Aluminum foams have been developed successfully and will be employed in the next generation of energy absorption boxes. Magnesium alloys are most eligible candidate to substitute aluminum alloy, especially for lower density and higher damping properties in wide industrial fields. Magnesium alloy foams are expected to be particularly advantageous due to two thirds the density of aluminum. However, foaming magnesium have been weakness of high activity, difficult processing and very dangerous. In order to upgrade this problem, AM50 magnesium alloy which has better characteristic is safe to use through foaming time and alloying element in this study.