• Title/Summary/Keyword: 발파피해

Search Result 96, Processing Time 0.024 seconds

건축물 및 인체에 대한 발파진동 허용기준 고찰

  • 이경운
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1997.03a
    • /
    • pp.1-40
    • /
    • 1997
  • 현재 우리나라에는 다양한 사회간접자본의 건설이 실행되고 있다. 사회간접자본의 건설은 국가의 장기적인 성장을 위하여 필요한 공공적인 사업이지만 필수적으로 대형의 건설작업이 수반하기 마련이다. 이미 인구의 집중도가 높은 도시지역은 물론이고 농어촌지역에 이르기까지 이들 건설사업으로 인한 진동과 소음 문제로 민원이 끊이지 않고 있는 형편이다. 특히 오랜 개발도상의 기간에 일방적으로 보호되지 못하였던 시민의 권리가 요지음 집단민원의 제기라는 형태로 표출되었고 이 과정에서 진정한 민원피해의 발생여부를 가릴 수 있는 기준이 필요하게 되었다. (중략)

  • PDF

The Study of noise and vibration on application of the method breaking & excavating rock(Super wedge) (암파쇄굴착공법(Super wedge) 적용에 따른 소음.진동에 대한 고찰)

  • Won, Yeon-Ho;Kang, Choo-Won;Ryu, Chang-Ha
    • Proceedings of the KSEE Conference
    • /
    • 2006.10a
    • /
    • pp.167-184
    • /
    • 2006
  • There is cattle shed and house structure of a country village in the vicinity of the construction site. that is why the environmental effect evaluation on blasting had been done in advance to prevent any harm to those from the work. As the result, it is impossible to apply to the blasting method, and the Super wedge method, a kind of a rock-splitting method which there is no secondary breaking by a breaker of the methods breaking &excavating rock according to the classification of the blasting method by the ministry of construction & transpotation, applied to decrease noise and vibration, and to the work classification, the extent of noise and vibration measured with the instrument only for noise(SC-310c) and with the instrument only for vibration(BLASTMATE) respectively. A drilling, splitting, collecting, loading works at the closest point(about 10m) is barely possible on the consideration of vibration to the result of measurement, but carefulness needs on moving of equipment. On the case of noise, even drilling, collecting, loading work except splitting at the comparatively close point(about 20m) is difficult. So, the method breaking &excavating rock according to the classification of the blasting method by the ministry of construction & transpotation has to apply in consideration of noise level in accordance with the work processing.

  • PDF

A Field Survey of Noise Associated with Subway Train Passage (지하철 연도변의 소음 조사)

  • Son Jung Gon
    • Explosives and Blasting
    • /
    • v.11 no.2
    • /
    • pp.60-68
    • /
    • 1993
  • The noise and vibration generated by the subway rolling stocks operated along the Seoul Subway Line No.1, 2, 3, and 4 lead to a controversy of pollution problem especially in residential areas. However, there is no data or guide to define the damage or provide adequate protection against such pollutions. The field measurements were made to characterize the noise attenuation due to distance, noise level distribution around the subway track of the aboveground and underground parts of each Line. The assessment criteria and methods are considered in addition to the practical available noise control methods. The noise level measured at Line No. 1 and 3 are less than 60 dB(A) with no pollution problem. Only a part of the aboveground section of Line No.2 and 4 indicates severe noise pollution. The effective boundary of these areas exposed to 70dB (A) noise are within 50m from the track centerline of No.2 line and 25m of No.4 line. The residents file a strong complaints whenever the noise level exceeds the 80dB (A) , and an occasional complaints between 70 to 80 dB(A). The distribution of high level noise of 80 dB(A) occurs within 25m from the track centerline of the overbridge, 12.5m of the short steel bridge, and about loom of the long steel bridge such as Dangsan Bridge. The intermediate noise level of 70 to 80 dB(A) is recorded within 50m from the overbridge, U-type retaining structure, and short steel structure, and 280m from the long steel bridge. The results presented in this paper can be used to understand the characteristics of the noise pollution along the Seoul Subway now In operation, and used as a guide to improve the existing noise pollution problems.

  • PDF

Theoretical study on rock excavation method by whitelight thermal stress (백열광을 이용한 무진동, 무소음 암반파쇄공법의 이론적 고찰)

  • Choi, Yong-Ki;Han, Hyun-Hee;Kim, Sung-Hwan;Kim, Hak-Joon;Arrison, Norman L.;Kong, Hoon-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.229-234
    • /
    • 2002
  • Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits such as improvement of workability, reducement of operation period, and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

  • PDF

Trans-Oceanic Propagation of Tsunami (쓰나미의 외양전파)

  • 김양근;최병호
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.157-159
    • /
    • 1995
  • 지난 1995년 7월 30일 칠리 북측해안(23.4$^{\circ}$S, 70.2$^{\circ}$W)에서 발생한 진도 8.2(Mw = 8.2 $\pm$ 0.16)의 지진에 의한 쓰나미는 태평양을 가로질러 일본해안까지 전파되어 다시 한번 일본에서 원지 쓰나미의 내습에 따른 해안재해의 경각심을 일으켰다. 본 연구에서는 역사적으로 큰 피해를 유발시킨 1883년의 크라카토아 화산 폭발에 의한 쓰나미, 1960년 칠리 발파라이소 해역의 쓰나미, 1964년 알라스카 Prince William Sound에서의 쓰나미의 외양전파(trans-oceanic propagation)를 쓰나미 수치 시뮬레이션 모형에 의해 산정하고, 그 결과를 과학가시화 기법에 의해 정연한 컴퓨터 그래픽 비디오 애니메이션으로서 작성하였다. (중략)

  • PDF

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

Damage Contribution Rate Analysis by Accidental Tunnel Explosion at a Multi-layered Room and Pillar Mine (우발적 갱도폭발에 따른 다층 주방식 채광광산 구조요인별 피해 기여도 분석)

  • Ko, Young-Hun;Yang, Hyung-Sik;Kim, Seung-Jun
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, parametric studies are conducted to evaluate the contribute effect of multi layered room and pillar mine structures by underground accidental explosions. Influence of PPV(Peak Particle Velocity) obtained from large explosion at a multi layered room and pillar mine was numerically simulated by using AUTODYN. Parameters for contribution rate Analysis was analyzed by the robust design method. Orthogonal array is $L_9(3^4)$, which was adopted in this study, the parameters were pillar height, pillar width, mine span and sill pillar of 3 levels. Results of analysis showed that bottom mine of vertical direction from explosion point are most affected by pillar height, followed by sill pillar thickness, mine span and pillar width. Parameters affecting adjacent mine of horizontal direction from explosion are in the order of pillar width, mine span, pillar height and sill pillar thickness.

Analysis of Research Trends of Explosion Accidents Using Co-Occurrence Keyword Analysis (동시출현 핵심단어 분석을 활용한 폭발사고 연구 동향 분석)

  • Youngwoo Lee;Minju Kim;Jeewon Lee;Wusung An;Sangki, Kwon
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.12-28
    • /
    • 2024
  • Explosion involving rapid energy diffusion are causing enormous human and economic damage. Due to the advancement of the industry, various and widespread explosion accidents are occurring worldwise, and to prevent such explosion accidents, accurate cause analysis should be the basis. Research analysis related to worldwise explosion accidents was carried out in a limited range for some accidents. By conducting bibliometric analysis of keywords on all the papers published in international journals, this study attempted to derive the overall research trend by period and the latest fields in which future researchers may be interested. As a result of the study of keywords, the number of papers was generally small and the number of overall key words was small from 2005 to 2014, but numerical simulation and artificial intelligence have been used for the analysis of explosion accident cases since 2015, and various studies such as lithium-ion battery and mixed gas, which are the latest research fields, are currently being actively conducted.

Suggestion of Safety Level in Fish Farming by Impulsive Sound (충격소음으로 인한 양식어류 피해기준 제안)

  • Choi, Tae Hong;Kim, Jung Han;Song, Ha Lim;Ko, Chin Surk
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • As for noise and vibration occurring due to construction near fish farms, engineering and the technical opinions of experts in different areas were excluded in calculating any damage. The victims tend to present only biological consulting-based opinions while construction companies tend to present information on general construction noise and vibration as they have little biological knowledge on fish. So, the National Environmental Dispute Medication Commission presented specific damage standard in 2009 through studies on standard in calculating compensation and damage assessment of farm-raised fish that were affected by noise and vibration. Currently, 140 dB re $1{\mu}Pa$ is accepted as damage standard of underwater noise in the country. This standard is the RMS value of continuous sounds for more than a second, not the impulsive sounds. To look up the data on existing studies, fish showed different reactions to underwater sounds according to the different kinds of fish such as ostariophysan or non-ostariophysan, and pinnipeds or non-pinnipeds. So, this study will present damage standards for impulsive sounds in consideration of the differences in the characteristics of the impulsive and continuous sounds.

Assessment of the Applicability of Vapor Cloud Explosion Prediction Models (증기운 폭발 예측 모델의 적용성 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.44-53
    • /
    • 2022
  • This study evaluates the applicability of the TNT Equivalency Method, Multi-Energy Method, and Baker-Strehlow-Tang (BST) Method, which are blast prediction models used to determine the overpressure of blast wave generated from vapor cloud explosion. It is assumed that the propane leaked from a propane storage container with a capacity of 2000 kg installed in an area where studio houses and shopping centers are concentrated causes a vapor cloud explosion. The equivalent mass of TNT calculated by applying the TNT Equivalency Method is found to be 4061 kg. Change of overpressure with the distance obtained by the TNT Equivalency Method, Multi-Energy Method, and BST Method is rapid and the magnitude of overpressure obtained by the TNT Equivalency Method and BST method is generally similar within 100 m from explosion center. As a result of comparing the overpressure observed in the actual vapor cloud explosion case with the overpressure obtained by applying the TNT Equivalent Method, Multi-Energy Method, and BST Method, the BST Method is found to be the best fit. As a result of comparing the overpressure with the distance obtained by each explosion prediction model with the damage criteria for structure, it is estimated that the structure located within 90 m from explosion center would suffer a damage more than partial destruction, and glass panes of the structure separated by 600 m would be fractured.