• Title/Summary/Keyword: 발파에너지

Search Result 101, Processing Time 0.021 seconds

Study on Microseismic Data Acquisition and Survey Design through Field Experiments of Hydraulic Fracturing and Artificial Blasting (수압파쇄 및 인공발파 현장실험을 통한 미소지진 계측 및 설계에 대한 연구)

  • Kim, Jungyul;Kim, Yoosung;Yun, Jeum-Dong;Kwon, Sungil;Kwon, Hyongil;Shim, Yonsik;Park, Juhyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • The purpose of this study is to ensure microseismic data acquisition technique for hydraulic fracturing imaging at the site of shale gas development. For this, microseismic data acquisition was performed during hydraulic fracturing and artificial blasting at a site bearing shale layers. Measured microseismic event data during the hydraulic fracturing have the very small amplitude of 0.001 mm/sec ~ 0.003 mm/sec and the frequency contents of 5 Hz ~ 20 Hz range. Meanwhile microseismic event data acquired during artificial blasting have the bigger amplitude (0.011 mm/sec ~ 0.302 mm/sec) than hydraulic fracturing event data and their frequency contents have the range of 5 Hz ~ 2 kHz. For microseismic data acquisition design, the selection of appropriate instrumentation including sensors and the recording system, the determination of sensor array and the deployment range were investigated based on the theoretical data and field application experiences.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Assessment of the Applicability of Vapor Cloud Explosion Prediction Models (증기운 폭발 예측 모델의 적용성 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.44-53
    • /
    • 2022
  • This study evaluates the applicability of the TNT Equivalency Method, Multi-Energy Method, and Baker-Strehlow-Tang (BST) Method, which are blast prediction models used to determine the overpressure of blast wave generated from vapor cloud explosion. It is assumed that the propane leaked from a propane storage container with a capacity of 2000 kg installed in an area where studio houses and shopping centers are concentrated causes a vapor cloud explosion. The equivalent mass of TNT calculated by applying the TNT Equivalency Method is found to be 4061 kg. Change of overpressure with the distance obtained by the TNT Equivalency Method, Multi-Energy Method, and BST Method is rapid and the magnitude of overpressure obtained by the TNT Equivalency Method and BST method is generally similar within 100 m from explosion center. As a result of comparing the overpressure observed in the actual vapor cloud explosion case with the overpressure obtained by applying the TNT Equivalent Method, Multi-Energy Method, and BST Method, the BST Method is found to be the best fit. As a result of comparing the overpressure with the distance obtained by each explosion prediction model with the damage criteria for structure, it is estimated that the structure located within 90 m from explosion center would suffer a damage more than partial destruction, and glass panes of the structure separated by 600 m would be fractured.

Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique (FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증)

  • Lee, Sang-Gab;Lee, Jae-Seok;Park, Ji-Hoon;Jung, Tae-Young;Lee, Hwan-Soo;Park, Kyung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

A Study on Environmental Pollution Issues in Fireworks Display (불꽃놀이의 환경오염 측면에 관한 연구)

  • Ahn, Myung-Seog;Lee, Jin-Ho;Shin, Chang-Young
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.45-51
    • /
    • 2008
  • Fireworks display is called as younwha in korean, pokjuk in chinese, hanabi in japanese and fireworks display in English. Fireworks is a kind of art calling as engineering art program that presents its artistic sense by making up light, sound, heat, form, smoke, smoke screen, time delay and kinetic energy etc. which are made by combustion and deflagrations of explosives. Korea's fireworks skill is world class. In 1980s, we already developed the skills. After 2010 year, It would develop as Nano-biotechnology considering its environmental safety passing by 1990s' grow fully step. After pleasant fireworks, it requires a environmental pollution control measure, ability of emergency state control, management of storing place, a blind shell and waste disposal and citizenship elevation etc. This paper indicated around fireworks the present conditions, environmental pollution buzz, direction of development and plan.

The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR (전기비저항, 탄성파 그리고 GPR 탐사를 활용한 충적층 탐사)

  • Park, Chung-Hwa;Won, Kyung-Sik;Byun, Ji-Hwan;Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.17-29
    • /
    • 2013
  • The geophysical methods have an advantage for investigating the wide area with low cost, and thus the application of these methods has been increased. The objective of this paper estimates the characteristics of alluvium through the geophysical methods including elastic wave, electrical resistivity and ground penetration radar. And the standard penetration test is also carried out for verifying the geophysical data with comparison. The sources of elastic wave method are divided into hammer and sissy and the electrical resistivity method is applied with different sizes, shapes and arrays of electrode for deciding the effective way. The center frequency is determined to be 270 MHz for considering the characteristics of soil. The results of ground penetration radar are also compared with those of standard penetration test. The high resolution shows when the source is a sissy in elastic wave method, however, the water level is not identified. In the electrical resistivity method, the non-polarizable electrode and schlumberger array show highly reliable data and the resolution of ground penetration radar is low. Thus, the results of this study are widely applied for determining the appropriate method when investigating the characteristics of alluvium.

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

Status of Researches of Excavation Damaged Zone in Foreign Underground Research Laboratories Constructed for Developing High-level Radioactive Waste Disposal Techniques (고준위방사성폐기물 처분 기술개발을 위해 건설된 해외 지하연구시설에서의 암반손상대 연구 현황)

  • Park, Seunghun;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.31-54
    • /
    • 2017
  • In the countries operating nuclear reactors, the development of high-level radioactive waste(HLW) disposal technique is considered as an urgent and important issue for sustainable utilization of nuclear energy. In Korea, in which a low and intermediate radioactive waste repository is already operating, the construction of an underground research laboratory for in situ validation studies became a matter of interest with increasing concerns on the management of HLW. In order to construct and to operate an underground HLW repository safely in deep underground, the stability of rock mass should be guaranteed. As an important factor on rock stability, excavation damaged zone (EDZ) has been studied in many underground research laboratories in foreign countries. For accurate evaluation of the characteristics and effects of EDZ under disposal condition, it is required to use reliable investigation method based on the analysis of previous studies in similar conditions. In this study, status of foreign underground research laboratories in other countries, approaches for investigation the characteristics, size, and effect of EDZ, and major findings from the researches were surveyed and reported. This will help the accomplishment of domestic researches for developing HLW management techniques in underground research laboratory.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.