• Title/Summary/Keyword: 발진

Search Result 1,522, Processing Time 0.032 seconds

Design of transistor oscillator for X-band application using a pair of L-shaped monopole slot resonator (한 쌍의 L-형 모노폴 슬롯 공진기를 이용한 X-밴드 트랜지스터 발진기 설계)

  • Lee, Yeong-min;Lee, Young-soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2021
  • In this paper, a planar transistor oscillator for X-band using a newly proposed L-shaped monopole slot resonator is proposed. For planar design, an L-shaped monopole slot with an open-end is used as a resonator for a transistor oscillator. As a result of the simulated design of the resonator in three stages, a high Q value of 1169.84 and a high insertion loss of 49.934 dB were identified. The results of the final design and manufactured oscillator measurements confirmed that the oscillation output is greater than 7 dBm and has good phase noise characteristics of -58 dBc/Hz at 100 kHz offset. The proposed oscillator is planar and has the advantage of being directly applicable to microwave integrated circuit technology. It also has the advantage of being able to reduce its size as it can only be implemented in microstrip form without additional devices such as metal cavities and tuning screws in 3D structures, as in the case of a DRO (dielectric resonance oscillator).

Fabrication of a High-performance Oscillator with a Tunable High-Q HTS $YBa_2Cu_3O_{7-\delta}$ Resonator (High-Q $Yba_2Cu_3O_{7-\delta}$ 고온초전도체 공진기를 이용한 주파수 튜닝이 가능한 고성능 발진기 제작)

  • Yang Woo Il;Lee Jae Hun;Hur Jung;Lee Sang Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.63-70
    • /
    • 2005
  • We investigated the phase noise of an oscillator with a extremely high-Q resonator used as the resonant element. A TE$_{011}$ mode rutile-loaded resonator with high-temperature superconductive (HTS) $YBa_2Cu_3O_{7-\delta}$(YBCO) films used as the endplates is prepared for this purpose. At 23.5 K, the unloaded Q and the loaded Q are 863000 and 180000, respectively. The phase noise of -104.8 dBc/Hz at 1 KHz offset was observed for the oscillator having a resonator with $Q_{L}$ =180000 at the $TE_{01\delta$ mode resonant frequency of 8.545 GHz at 23.5 K Such oscillators with very low phase noise are expected to be used for building up communication systems capable of efficient use of the frequency band and high-speed data transmission as well as for Doppler radars. Frequency tuning could be realized for the resonator by using a piezoactuator Applicability of the tunable rutile resonator for fabricating tunable oscillators of high performances is discussed.

Analysis of Gain and Frequency in a DFB laser with Cleaved Facets (결정 벽개면을 갖는 DFB 레이저의 이득과 주파수 분석)

  • Lee, Chang-Seok;Kwon, Kee-Young;Ki, Jang-Geun;Cho, Hyun-Mook
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, when both the refractive index grating and the gain grating exist in a 1.55um DFB laser with two cleaved mirror facets, when the phase of ρl is fixed to 0 and the phase of ρr is changed to -π/2, π, π/2, 0, the change in frequency and oscillation gain was theoretically analyzed. In the case of δL<0, the oscillation gain required for lasing is the lowest and the most stable frequency operation is obtained in the case of (ρl phase=0, ρr phase=0) and κL=10, when κL is varied from 0.1 to 10. In the case of δL>0, when (ρl phase=0, ρr phase=π) and κL=10, the oscillation gain required for lasing is the lowest and the difference between the oscillation gains of the higher-order modes is large so that the most stable frequency operation is obtained.

Output characteristics of a continuous wave deuterium fluoride chemical laser (연속발진 불화중수소 화학 레이저 출력특성)

  • 이정환;박병서;김재기
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.65-69
    • /
    • 2002
  • A continuous wave deuterium fluoride (DF) chemical laser was designed and manufactured, and we have achieved DF laser beam generation with the maximum output power of 101 W. The gain medium is vibration-rotationally excited DF molecules produced by F+D$_2$ cold reaction through supersonic diffusion mixing in an optical cavity. F atoms are produced in a combustor by F$_2$+ H$_2$ reaction and injected into the cavity through a supersonic nozzle. The optimal chemical efficiency was measured to be 5.12% and specific power to be 96.5 J/g.

Design of the Ku-band Phase Locked Oscillator for high power and low phase noise. (고출력, 저위상잡음 Ku-대역 위상동기발진기설계)

  • 민상보;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1297-1304
    • /
    • 2002
  • The phase locked oscillator having a low phase noise and high output in Ku-band was designed. To obtain the low phase noise and high output characteristics of oscillator, the nonlinear equivalent circuits of p-HEMT was analyzed by TOM method and we have decided the trade-off bias point between the low phase noise and the output power of oscillator. The designed phase locked oscillator with prescaler for stable operation, experiment results exhibits output power of 1003m with phase noise in the phase locked state of -824BC/HB at 10mz offset from 13.250Hz, and simulation result of 1003m output power in the phase noise -840Bc/Hz at 10KHz offset frequency respectively. a good agreement has been obtained between simulations and experiments results.

A Study on the new structure Voltage Controlled Hair-pin Resonator Oscillator using parallel feedback of second-harmonic (2차 고조파의 병렬 궤환을 이용한 새로운 구조의 전압 제어 Hair-pin 공진 발진기에 관한 연구)

  • 민준기;하성재;이근태;안창돈;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.530-534
    • /
    • 2002
  • In the thesis, For improving the Stability of VCHRO(Voltage Controlled Hair-pin Resonator Oscillator) the new structure using the parallel feedback of the second harmonic is proposed for self-phase locking effect. This module is composed of wilkinson divider, frequency doubler, directional coupler, and bandpass filter using a hair-pin resonator, which are integrated into miniaturized hybrid circuit. The module exhibits output power of 2.5 dBm at 19.5 GHz, -29.83 dBc fundamental frequency suppression and -76.52 dBc/Hz phase noise at 10 kHz offset frequency from carrier of center frequency 19.5 GHz.

A Realization on the Dualband VCO Using T-Junction Switching Circuit (T-Junction 스위칭 회로를 이용한 이중 대역 전압제어 발진기 구현)

  • Oh Icsu;Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.105-110
    • /
    • 2005
  • In this paper, a new technique to reduce the phase noise in microwave oscillators is proposed using the resonant characteristics of the Photonic Bandgap(PBG). We applied PBG structure to ground of the microstrip line resonator with the low Q(Quality factor). Therefore, we improved about 10 dBc in contrast to phase noise characteristic of the conventional microstrip line oscillator at 2.4 GHz @ 100 MHz offset. Output power is 7.09 dBm.

A Study on the Construction and the Output Characteristics of Nd:YAG Laser Using Unstable Ring Resonator (불안정 고리형 공진기를 이용한 Nd:YAG 레이저의 제작 및 발진 특성에 관한 연구)

  • 최승호;박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1994
  • We constructed travelling type Nd:YAG laser with a negative branch confocal unstable ring (NBCUR) resonator like a Newtonian telescope type using four flat mirror and two positive lenses. Annular output beam was obtained by using scraper mirror. This laser oscillator has 22 optical faces and optical alignment was done by equal inclination interferance method. We inserted a Faraday rotator of permanent magnet type designed in the laboratory for unidirectional operation. We obtained laser output energy of 80m.I with electrical input energy of 70 J. and we obtained that peak power of 0.5MW through Q-switching with BDN dye.

  • PDF