• Title/Summary/Keyword: 발전 부문 $CO_2$ 감축 비용

Search Result 4, Processing Time 0.023 seconds

Comparison of Cost-Efficiency of Nuclear Power and Renewable Energy Generation in Reducing CO2 Emissions in Korea (원자력 및 신재생에너지 발전의 CO2 감축 비용 효율성 비교)

  • Lee, Yongsung;Kim, Hyun Seok
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.607-625
    • /
    • 2021
  • The objective of this study is to estimate the relationship between CO2 emissions and both nuclear power and renewable energy generation, and compare the cost efficiencies of nuclear power and renewable energy generation in reducing CO2 emissions in Korea. The results show that nuclear power and renewable energy generation should be increased by 1.344% and 7.874% to reduce CO2 emissions by 1%, respectively. Using the estimated coefficients and the levelized costs of electricity by source including the external costs, if the current amount of electricity generation is one megawatt-hour, the range of generation cost of nuclear power generation to reduce 1% CO2 emissions is $0.72~$1.49 depending on the level of external costs. In the case of renewable energy generation, the generation cost to reduce 1% CO2 emissions is $6.49. That is, to mitigate 1% of CO2 emissions at the total electricity generation of 353 million MWh in 2020 in Korea, the total generation costs range for nuclear power is $254 million~$526 million for the nuclear power, and the cost for renewable energy is $2.289 billion for renewable energy. Hence, we can conclude that, in Korea, nuclear power generation is more cost-efficient than renewable energy generation in mitigating CO2 emissions, even with the external costs of nuclear power generation.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Consistency in the Basic Plan on Electricity Demand and Supply and Social Costs (전력수급기본계획의 정합성과 사회적 비용)

  • LEE, Suil
    • KDI Journal of Economic Policy
    • /
    • v.34 no.2
    • /
    • pp.55-93
    • /
    • 2012
  • In Korea, energy policies are actualized through various energy-related plans. Recently, however, as high-ranking plans, which are very vision-oriented, continually set higher sector-by-sector goals, subordinate action plans, which require consistency, encounter distortions in their establishment process. Also, each subordinate action plan reveals limitations in terms of securing flexibility of the plan in responding to uncertainties of the future. These problems pose potential risks such as causing huge social costs. In this regard, with an aim to provide empirical evidence for discussions on improving the procedure for developing and executing Korea's energy plans, this study mainly analyzes the Basic Plan on Electricity Demand and Supply-one of the most important subordinate action plans-in order to explain the problems of the Basic Plan in a logical manner, and potential problems that could occur in the process of sustaining consistency between the Basic Plan and its higher-ranking plans. Further, this paper estimates the scale of social costs caused by those problems assuming realistic conditions. According to the result, in the case of where maximum electric power is estimated to be 7% (15%) less than the actual amount in the Basic Plan on Electricity Demand and Supply, the annual generation cost will rise by 286 billion won and (1.2 trillion won) in 2020. Such social costs are found to occur even when establishing and executing the Basic plan according to the target goal set by its higher-ranking plan, the National Energy Master Plan. In addition, when another higher-ranking GHG reduction master plan requires the electricity sector to reduce emissions by additional 5% in the GHG emissions from the right mix in electricity generation with 'zero' cost of carbon emission, the annual generation cost will rise by approximately 915 billion won in 2020. On the other hand, the analysis finds that since economic feasibility of electric powers in Korea varies significantly depending on their type, Korea is expected to face very small potential social costs caused by uncertainties over the future price of carbon dioxide in the process of establishing the Basic Plan.

  • PDF

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.