• Title/Summary/Keyword: 발전량 예측

Search Result 533, Processing Time 0.041 seconds

Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model (하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가)

  • Lee, Seoro;Bae, Joo Hyun;Lee, Gwanjae;Yang, Dongseok;Hong, Jiyeong;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

The Performance and the NOx Emission Characteristics of the Combined Cycle Using Medium-Btu Coal Gas (중발열량 석탄 가스를 사용하는 복합발전 사이클의 성능 및 NOx 배출 특성)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.9 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • 증발열량 석탄가스 연료를 사용하는 석탄가스와 복합 발전 플랜트의 성능 및 NOx 배출량을 동시에 예측하기 위한 모사 방법을 제시하였다. 본 방법은 복합 사이클의 열역학적 해석 기법을 토대로, 석탄가스화 복합발전 플랜트의 시스템 연계 및 석탄가스 연소에 의한 탈설계점 효과를 예측하는 모델들을 포함하고 있다. 본 방법에 의한 전산 모사 결과와 천연가스를 사용하는 복합발전소의 실제 시험 결과를 비교함으로써, 본 방법의 예측정확도를 검증하였다. 본 모사 방법을 이용하여, 서로 다른 4가지 석탄가스 연료에 대해, 공기 분리장치와의 다양한 연계 설계 조건에 따른 석탄가스화 복합발전 플랜트의 전체 성능, 운전 안전성 및 NOx 배출 특성들을 비교, 검토하였다.

  • PDF

A Study on Machine Learning of the Drivetrain Simulation Model for Development of Wind Turbine Digital Twin (풍력발전기 디지털트윈 개발을 위한 드라이브트레인 시뮬레이션 모델의 기계학습 연구)

  • Yonadan Choi;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2023
  • As carbon-free has been getting interest, renewable energy sources have been increasing. However, renewable energy is intermittent and variable so it is difficult to predict the produced electrical energy from a renewable energy source. In this study, digital-twin concept is applied to solve difficulties in predicting electrical energy from a renewable energy source. Considering that rotation of wind turbine has high correlation with produced electrical energy, a model which simulates rotation in the drivetrain of a wind turbine is developed. The base of a drivetrain simulation model is set with well-known state equation in mechanical engineering, which simulates the rotating system. Simulation based machine learning is conducted to get unknown parameters which are not provided by manufacturer. The simulation is repeated and parameters in simulation model are corrected after each simulation by optimization algorithm. The trained simulation model is validated with 27 real wind turbine operation data set. The simulation model shows 4.41% error in average compared to real wind turbine operation data set. Finally, it is assessed that the drivetrain simulation model represents the real wind turbine drivetrain system well. It is expected that wind-energy-prediction accuracy would be improved as wind turbine digital twin including the developed drivetrain simulation model is applied.

A Comparative Study of Monthly Inflow Prediction Methods by using Stochastic model and Artificial Neural Network model (추계학적 모형과 신경망 모형을 이용한 월유입량 예측기법 비교 연구)

  • Kang, Kwon Su;Heo, Jun Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1208-1212
    • /
    • 2004
  • 다목적댐을 효율적이고 체계적으로 운영하기 위해서는 수문순환에 대한 지역별, 기간별 이해와 더불어 댐저수지로의 정확한 유입량 산정이 필요하다. 수문모델링을 비교하기 위해서는 개념적 모형과 추계학적 모형으로 나눌 수 있는데 개념적 모형은 상당히 많은 입력요소로 말미암아 사용자로 하여금 이해를 하는데 있어서 어려움을 겪을 수 밖에 없는 실정이나 추계학적 모형은 확률적 철상 및 기초적 예측이론을 습득하게 되면 쉽고 간단하여 검토를 용이하게 할 수 있는 장점이 있다. 수자원시스템의 설계, 계획, 운영에 있어서 핵심적인 수문변수의 미래거동의 보다 나은 추정치가 필요하다. 예를 들어, 수력발전, 레크리에이션 이용과 하류지역의 오염희석과 같은 다중 목적을 유지하기 위하여 다목적댐을 운영할 때에, 다가오는 미래시간에 대한 계획된 유입량의 예측이 요구된다. 예측의 목적은 미래에 발생한 정확한 예측을 제공하는 것이다. 따라서 월유입량 예측을 위해 추계학적 모형(ARMA(1,1), ARMAX, TFN, SARIMA)과 신경망 모형(BP, CASCADE 등)의 적용을 통해 한강수게 주요 다목적댐에 가장 적합한 방법을 선정하고자 하는데 본 연구의 목적이 있다.

  • PDF

설계가중치를 이용한 유사 최량선형 비편향 예측

  • 신동윤;신민웅
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.161-164
    • /
    • 2004
  • You 와 Rao (2002)는 소지역 추정시 유사 최량선형 비편향 예측에서 설계 가중 값을 사용하는 방법을 발전시켰다. 특히 소지역 평균들을 추정하기 위하여 유사-최량선형 비편향 예측 추정량을 제안하였다. 우리는 소지역 추정에서 실용적으로 이용되는 몇 가지 추가적인 성질을 연구하였다.

  • PDF

Predictions of dam inflow on Han-river basin using LSTM (LSTM을 이용한 한강유역 댐유입량 예측)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.319-319
    • /
    • 2020
  • 최근 데이터 과학의 획기적인 발전 덕분에 딥러닝 (Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 사용하여 댐 유입량을 예측하였다. 구체적인 내용으로, (1) LSTM에 필요한 입력 데이터를 효율적으로 사전 처리하는 방법, (2) LSTM의 하이퍼 매개변수를 결정하는 방법 및 (3) 다양한 손실 함수(Loss function)를 선택하고 그 영향을 평가하는 방법 등을 다루었다. 제안된 LSTM 모델은 강우량(R), 댐유입량(Q) 기온(T), 기저유량(BF) 등을 포함한 다양한 입력 변수들의 함수로 가정하였으며, CCF(Cross Correlations), ACF(Autocorrelations) 및 PACF(Partial Autocorrelations) 등의 기법을 사용하여 입력 변수를 결정하였다. 다양한 sequence length를 갖는 (즉 t, t-1, … t-n의 시간 지연을 갖는) 입력 변수를 적용하여 데이터 학습에 최적의 시퀀스 길이를 결정하였다. LSTM 네트워크 모델을 적용하여 2014년부터 2020년까지 한강 유역 9개의 댐 유입량을 추정하였다. 본 연구로부터 댐 유입량을 예측하는 것은 홍수 및 가뭄 통제를 위한 필수 요건들 중 하나이며 수자원 계획 및 관리에 도움이 될 것이다.

  • PDF

A study on estimation of dam sediment inflow using physics-based models (물리기반 모형을 활용한 댐 토사 유입량 산정에 관한 연구)

  • Min Ho Yeon;Hyun Uk An;Seung Jun Lee;Gi Ha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.473-473
    • /
    • 2023
  • 토사재해는 토사로 인해 발생하는 재해로 정의되며, 일반적으로 우기(rainy season)에 주로 발생한다. 또한, 강우로 인해 발생하는 토양침식(soil erosion)과 강우 및 지진에 의해 나타나는 산사태로 인한 토석류(debris flow)가 토사재해의 주요 원인으로 꼽힌다. 이러한 재해로 인하여 하천 및 호소의 수질 저하, 토양유실에 따른 농경지 감소 등 여러 문제가 발생하고 있다. 특히, 댐으로 유입되는 토사는 사수역(dead storage)을 증가시키고, 발전용 댐의 경우 토사재해가 발전설비 마모 등을 일으킴에 따라 발전효율을 감소시키기도 한다. 더욱이, 기후변화로 인하여 강우량 및 강우강도가 증가하고, 최근 한반도에서는 지진의 강도와 빈도 또한 증가함에 따라 토사재해의 잠재적 위험성을 증대시키고 있다. 따라서 댐 유역에서의 토사 유입에 관한 정량적 예측을 포함한 종합적인 댐 토사 관리기술 및 대책이 요구된다. 본 연구에서는 현재 수질 악화로 인해 발전이 중단된 도암댐을 대상으로 댐으로의 토사 유입량을 분석하고자 토양침식과 토석류의 정량적 예측이 가능하고, 각각의 물리적 과정을 고려하는 물리기반 모형을 활용하였다. 토사재해의 주요 원인인 강우와 지진에 대해 미래에 발생 가능한 시나리오를 작성하고, 시나리오별 토사 유입량과 유입 비율을 정량적으로 산정하였다. 본 연구의 결과는 유역 내 토사재해로 인한 피해 예방기술 및 댐 유지관리와 운영을 위한 기초 자료로 활용이 가능할 것으로 판단된다.

  • PDF

The past Inflow data Period Validit Analysis Using Seasonal ARIMA Model (계절 ARIMA모형을 이용한 과거 유입량 분석기간 적용성 연구)

  • Kim, Keun-Soon;Lee, Chung-Dea
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1410-1414
    • /
    • 2010
  • 최근 들어 가뭄과 국지성 호우 등의 기상이변이 지속적으로 발생하고 있으며, 이는 국민 삶의 발전과 향상에 밀접한 관계가 있는 것으로 전세계적으로 이에 대한 관심이 증가하고 있는 추세이다. 특히 댐의 효율적 관리와 안정적인 운영은 홍수피해 방지, 안정적인 용수공급과 같은 국민 생활과 밀접한 관계를 가지고 있어 수자원의 효율적인 운영과 이용은 장기적인 관점을 통하여 수립해야 한다. 이와 같이 댐 유입량의 예측은 유출모형의 목적 중 중요한 부분으로 확정론적 모형이 시 혹은 일유량과 같은 매우 짧은 시간의 유출을 예측하는데 주로 사용되지만 이는 매개변수의 추정이 불가능하거나 실제유역에서의 측정이 불가능 할 경우에는 모형적용에 한계가 있다. 이에 반해 추계학적 모형에 의한 유출예측은 장기간의 유출을 과거자료의 통계학적 특성변수를 매개변수로 하여 예측하는 방법으로 모형의 적용에 필요한 매개변수가 적어 그 적용성이 간편한 장점이 있다. 본 연구에서는 계절형 ARIMA모형을 적용하여 과거자료의 적용범위, 매개변수의 산정, 적합성 판정에 대하여 판단하고, 이 모형이 월유입량의 예측에 적합한지를 검토하였다.

  • PDF

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.