• Title/Summary/Keyword: 발열 텍스타일

Search Result 2, Processing Time 0.015 seconds

Optimal Heating Location for developing the Heating Smart Clothing based on Thermal Response of Body (발열 기능 스마트 의류를 위한 인체 온열반응 기반의 최적의 발열위치 연구)

  • Cho, Hakyung;Cho, Sangwoo
    • Science of Emotion and Sensibility
    • /
    • v.18 no.3
    • /
    • pp.93-106
    • /
    • 2015
  • In accordance with escalating demands for advanced technology products, the smart clothing that includes embedded ICT technology have expanded into fields of daily life. As a result of this trend, interest in smart clothing with digitally controllable heating has rapidly grown and the market for smart heated clothing has also expanded. Increasing of prospect in smart heated clothing market, the effectiveness and thermal sensation research of the location on the pad attached is insufficient. This study was conducted to find the optimal location of heated clothing via experimental research on changes in skin temperature and subjective thermal sensation when heating pads were placed on different areas of the body. For this experiment, the subjects consisted of 10 males in their 20's of standard physique. The skin temperature at 11 different areas of the body, rectal temperature, and subjective thermal sensation were taken at different stages (before testing, after a 20 minute rest period, 20 minute treatment period, and after a 40 minute recovery period) in an artificial-climate chamber at $-5^{\circ}C$. As a result, the optimal location for heating pads in smart clothing was estimated and suggested.

Development and Wearability Evaluation of All-Fabric Integrated Smart Jacket for a Temperature-regulating System Based on User Experience Design (사용자 경험 중심의 섬유일체형 온도조절 스마트재킷 개발과 착용성 평가)

  • Kim, Sareum;Roh, Jung-Sim;Lee, Eun Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.363-373
    • /
    • 2016
  • This study aims to develop an all-fabric integrated smart jacket in order to create a temperature-regulating system based on a user experience design. For this research, previous research technologies of a textile switch interface and a temperature-regulating system were utilized and a unifying technology for the all-fabric integrated smart jacket was developed which can provide the appropriate temperature environments to the human body. A self-heating textile was applied at the areas of the back and hood in the final tested jacket, and an embroidery circuit was developed in the form of a rectangle in the back and in both ears of the hood, taking into account the pattern of the jacket part where it was be applied and the embroidery production method. The textile switch interface was designed in a three-layer structure: an embroidery circuit line in a conductive yarn, an interval material, and a conductive sensing material, and it was made to work with the input and output sensors through the multiple input method. After the all-fabric integrated smart jacket was produced according to the pattern, all of the textile band lines for transmission were gathered and connected with a miniature module for controlling temperature and then integrated into the inside of the left chest pocket of the jacket. After the users put on this jacket, they were asked to assess the wearing satisfaction. Most of them reported a very low level of irritation and discomfort and said that the jacket was as comfortable as everyday clothing.