• Title/Summary/Keyword: 발생패턴

Search Result 3,094, Processing Time 0.035 seconds

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

An Empirical Study on the Spatial Effect of Distribution Patterns between Small Business and Social-environmental factors (소상공인 점포의 분포와 환경요인의 공간적 영향관계에 관한 실증연구)

  • YOO, Mu-Sang;CHOI, Don-Jeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This research measured and visualized the spatial dependency and the spatial heterogeneity of the small business in Cheonan-si, Asan-si with $100m{\times}100m$ grids based on global and local spatial autocorrelation. First, we confirmed positive spatial autocorrelation of small business in the research area using Moran's I Index, which is ESDA(Exploratory Spatial Data Analysis). And then, through Getis-Ord $GI{\ast}$, one kind of LISA(Local Indicators of Spatial Association), local patterns of spatial autocorrelation were visualized. These verified that Spatial Regression Model is valid for the location factor analysis on small business commercial buildings. Next, GWR(Geographically Weighted Regression) was used to analyze the spatial relations between the distribution of small business, hourly mobile traffic-based floating population, land use attributes index, residence, commercial building, road networks, and the node of traffic networks. Final six variables were applied and the accessibility to bus stops, afternoon time floating population, and evening time floating population were excluded due to multicollinearity. By this, we demonstrated that GWR is statistically improved compared to OLS. We visualized the spatial influence of the individual variables using the regression coefficients and local coefficients of determinant of the six variables. This research applied the measured population information in a practical way. Reflecting the dynamic information of the urban people using the commercial area. It is different from other studies that performed commercial analysis. Finally, this research has a differentiated advantage over the existing commercial area analysis in that it employed hourly changing commercial service population data and it applied spatial statistical models to micro spatial units. This research proposed new framework for the commercial analysis area analysis.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Studies on the Weed Competition 1. Interpretation of Weed Competition of Paddy Rice Under Various Cultural Patterns (잡초경합에 관한 연구 제1보 수도 재배양식에 따른 잡초 경합 구조 해석)

  • Guh, J.O.;Chung, S.T.;Chung, B.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 1980
  • Asking to change the cropping patterns to save the labor and capitals in paddy rice cultivation, the study was intended to know the weed problems under the various possible cultural systems; namely, direct seeding (in broadcast and row), machine transplanting and hand transplanting. Under the conditions as weedy check plots, paddy yields were significantly variated among cropping systems, and the functions of panicle No. and spikelet No. to the yield were neglected, among others. However, the yield and yield components were narrowed among cropping systems, and the function of spikelets number per area was comparatively improved to the others.

  • PDF

Spatial Autocorrelation and the Turnout of the Early Voting and Regular Voting: Analysis of the 21st General Election at Dong in Seoul (공간적 자기상관성과 관내사전투표와 본투표의 투표율: 제21대 총선 서울시 동별 분석)

  • Lim, Sunghack
    • Korean Journal of Legislative Studies
    • /
    • v.26 no.2
    • /
    • pp.113-140
    • /
    • 2020
  • This study is meaningful in that it is the first analysis of Korean elections using the concept of spatial autocorrelation. Spatial autocorrelation means that an event occurring in one location in space has a high correlation with an event occurring in the surrounding area. The voter turnout rate in the 21st general election of Seoul area was divided into the early-voting turnout and voting-day turnout, and the spatial pattern of the turnout was examined. Most of the previous studies were based on the unit of the precinct and personal data, but this study analyzed on the basis of the lower unit, Eup-myeon-dong, and analyzed using spatial data and aggregate data. Moran I index showed a fairly high spatial autocorrelation of 0.261 in the voting-day turnout, while the index of the early-voting turnout was low at 0.095, indicating that there was little spatial autocorrelation despite statistical significance. The voting-day turnout, which showed strong spatial autocorrelation, was compared and analyzed using the OLS regression model and the spatial statistics model. In the general regression model, the coefficient of determination R2 rose from 0.585261 to 0.656631 in the spatial error model, showing an increase in explanatory power of about 7 percentage points. This means that the spatial statistical model has high explanatory power. The most interesting result is the relationship between the early-voting turnout and the voting-day turnout. The higher the early-voting turnout is, the lower the voting-day turnout is. When the early-voing turnout increases by about 2%, the voting-day turnout drops by about 1%. In this study, the variables affecting the early-voting turnout and the voting-day turnout are very different. This finding is different from the previous researches.

The Roles of Service Failure and Recovery Satisfaction in Customer-Firm Relationship Restoration : Focusing on Carry-over effect and Dynamics among Customer Affection, Customer Trust and Loyalty Intention Before and After the Events (서비스실패의 심각성과 복구만족이 고객-기업 관계회복에 미치는 영향 : 실패이전과 복구이후 고객애정, 고객신뢰, 충성의도의 이월효과 및 역학관계 비교를 중심으로)

  • La, Sun-A
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.1-36
    • /
    • 2012
  • Service failure is one of the major reasons for customer defection. As the business environment gets tougher and more competitive, a single service failure might bring about fatal consequences to a service provider or a firm. Sometimes a failure won't end up with an unsatisfied customer's simple complaining but with a wide-spread animosity against the service provider or the firm, leading to a threat to the firm's survival itself in the society. Therefore, we are in need of comprehensive understandings of complainants' attitudes and behaviors toward service failures and firm's recovery efforts. Even though a failure itself couldn't be fixed completely, marketers should repair the mind and heart of unsatisfied customers, which can be regarded as an successful recovery strategy in the end. As the outcome of recovery efforts exerted by service providers or firms, recovery of the relationship between customer and service provider need to put on the top in the recovery goal list. With these motivations, the study investigates how service failure and recovery makes the changes in dynamics of fundamental elements of customer-firm relationship, such as customer affection, customer trust and loyalty intention by comparing two time points, before the service failure and after the recovery, focusing on the effects of recovery satisfaction and the failure severity. We adopted La & Choi (2012)'s framework for development of the research model that was based on the previous research stream like Yim et al. (2008) and Thomson et al. (2005). The pivotal background theories of the model are mainly from relationship marketing and social relationships of social psychology. For example, Love, Emotional attachment, Intimacy, and Equity theories regarding human relationships were reviewed. As the results, when recovery satisfaction is high, customer affection and customer trust that were established before the service failure are carried over to the future after the recovery. However, when recovery satisfaction is low, customer-firm relationship that had already established in the past are not carried over but broken up. Regardless of the degree of recovery satisfaction, once a failure occurs loyalty intention is not carried over to the future and the impact of customer trust on loyalty intention becomes stronger. Such changes imply that customers become more prudent and more risk-aversive than the time prior to service failure. The impact of severity of failure on customer affection and customer trust matters only when recovery satisfaction is low. When recovery satisfaction is high, customer affection and customer trust become severity-proof. Interestingly, regardless of the degree of recovery satisfaction, failure severity has a significant negative influence on loyalty intention. Loyalty intention is the most fragile target when a service failure occurs no matter how severe the failure criticality is. Consequently, the ultimate goal of service recovery should be the restoration of customer-firm relationship and recovery of customer trust should be the primary objective to accomplish for a successful recovery performance. Especially when failure severity is high, service recovery should be perceived highly satisfied by the complainants because failure severity matters more when recovery satisfaction is low. Marketers can implement recovery strategies to enhance emotional appeals as well as fair treatments since the both impacts of affection and trust on loyalty intention are significant. In the case of high severity of failure, recovery efforts should be exerted to overreach customer expectation, designed to directly repair customer trust and elaborately designed in the focus of customer-firm communications during the interactional recovery process to affect customer trust rebuilding indirectly. Because it is a longer and harder way to rebuild customer-firm relationship for high severity cases, low recovery satisfaction cannot guarantee customer retention. To prevent customer defection due to service failure of high severity, unexpected rewards as a recovery will be likely to be useful since those will lead to customer delight or customer gratitude toward the service firm. Based on the results of analyses, theoretical and managerial implications are presented. Limitations and future research ideas are also discussed.

  • PDF

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Petrological Characteristics and Origin of Volcaniclasts within the Massive Tuff Breccia Formation from Dokdo Island, Korea (독도 괴상 응회질 각력암층에서 나타나는 화산암편의 암석학적 특성과 기원)

  • Shim, Sung-Ho;Im, Ji-Hyeon;Jang, Yun-Deuk;Choo, Chang-Oh;Park, Byeong-Jun;Kim, Jung-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • Dokdo Island, Korea, is located in the East Sea belonging to back arc basin. In this study we examined petrology and geochemistry of massive tuffaceous breccia (MTB) from Dongdo (Eastern islet) and Seodo(Western islet), the two largest islands of Dokdo. Field studies and chemical analysis distinguish the MTB in Dongdo and Seodo. The Dongdo MTB (DMTB) is exposed up to 50 m on the ocean cliff and it has dominant basalt and trachybasalt with moderate amount of trachyte and scoria. On the other hand, Seodo MTB (SMTB), which is preserved between trachyte dike and trachyandesite, is composed of roughly equal amounts of basalt, trachybasalt and trachyte. The location of the islets were related to the source vent having in contact with underlying trachyte lava and differential pyroclastic deposits made them different characteristics. According to trace element analysis of trachytic volcanic clasts, the Ba concentration ranges from 66 to 103 ppm and Sr varies from 44 to 56 ppm in DMTB. However, Br and Sr in SMTB correspondingly showed relatively wide ranges: Br 785-1259 ppm and Sr 466-1230 ppm. These differential trends between DMTB and SMTB, along with the difference in P and Ti, indicate that the crystallization of alkali feldspar, feldspathoid, biotite, apatite and titanium took place differently. Nevertheless, DMTB and SMTB are similar in REE patterns and they are correspondingly characterized by high LREE, low HREE and similar $(La/Yb)_N$ values with 23.9-40.2 in DMTB and 27.4-32.9 in SMTB. These patterns suggest that Dongdo and Seodo might be originated from coeval magma suites. Dokdo island shows high concentrations of Ba, K and Rb. These signatures mark a result attributed to the mantle upwelling because the magma derived from the asthenosphere was metasomatized with subduction-related fluids.