• Title/Summary/Keyword: 발생변위

Search Result 2,032, Processing Time 0.024 seconds

An Analytical Study on Composite Beam Performance with Post-Fire Temperature Using ANSYS Program (ANSYS를 이용한 화재 후 온도에 따른 합성보 성능에 관한 해석적 연구)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.391-400
    • /
    • 2019
  • In the case of fire, a structure loses its original stiffness due to the temperature rise, and the load bearing capacity decreases. The loss of structural strength increases with increasing fire time of the structure. To prevent the collapse of buildings, it is very important to understand whether or not the members are damaged. On the other hand, there is insufficient data to be a guideline for diagnosing and evaluating the residual strength of the members in Korea. Therefore, this study examined the resistance performance by Finite-Element-Analysis of composite beams, which are composite structures among structural members. Composite beam modeling was carried out based on the model used in the Electrical Penetration Room (EPR) in cooperation with KEPCO. The heat transfer analysis and structural analysis of the critical phase were performed using ANSYS, a finite element analysis program. ANSYS was used to perform heat transfer analysis and structural analysis at the static analysis. To analyze the residual performance, the temperature distribution of the composite beam and the maximum displacement result of the heat-affected structure analysis were derived and the experimental data and the structural analysis result data were compared and analyzed.

Analysis of Shear Force in Perimeter Column due to Outrigger Wall in a Tall Building (고층 건물의 아웃리거 벽체에 의한 외부 기둥의 전단력 해석)

  • Huang, Yi-Tao;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.293-299
    • /
    • 2018
  • Steel truss outriggers can be replaced by reinforced concrete walls to control the lateral drift of tall buildings. When reinforced concrete outrigger walls are connected to perimeter columns, not only axial forces but also shear forces and moments can be induced on the perimeter columns. In this study, the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall is derived as analytic equations and the result is compared with the finite element analysis result. In the finite element analysis, the effects of connecting beams at each floor and the effect of modeling shear walls and outriggers with beam element and plane stress element was analyzed. The effect of the connecting beam was almost negligible and the plane stress element was determined to have greater stiffness than the beam element. The inter-story rotation and the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall was considerably smaller than the allowable value. Therefore, even if the outrigger wall made of reinforced concrete is applied to a tall building, it is considered that there is no need to study the shear force and moment induced in the perimeter columns.

Comparison of SqueeSAR Analysis Method And Level Surveying for Subsidence Monitoring at Landfill Site (매립지 지반침하 모니터링을 위한 SqueeSAR 해석법과 수준측량의 비교)

  • Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.137-151
    • /
    • 2018
  • Recently, National interest has been rising due to earthquakes in Gyeongju and Pohang, disasters caused by landslides, landslides, and sinkholes around construction sites, and damage caused by disasters. SAR is able to detect ground displacement in mm for wide area, collect data through satellite, predict timeliness of crustal change by time series analysis, and reduce disaster and disaster damage. The purpose of this study is to investigate the latest SAR interference analysis technique (SqueeSAR analysis technique) of Sentinel-1A satellite (SAR sensor) of European ESA for about 3 years by selecting the 1st landfill site in the metropolitan area in Incheon, The settlement amount was calculated in a time series. Especially, in order to examine the accuracy of the subsidence and subsidence tendency by the SqueeSAR analysis method, the ground level survey was compared and analyzed for the first time in Korea. Also, the tendency of the subsidence trend was predicted by analyzing the time series and correlation trend of the subsidence for three years. Through this study, it is expected that disaster prevention and disaster prevention such as sinkhole and landslide can be utilized from time series monitoring of crustal variation of the land.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.

Measurement of ground behaviour due to tunnelling using No-target program in laboratory model test (실내모형시험에서 No-target 프로그램을 이용한 터널 굴착으로 인한 지반거동 측정)

  • Lee, Jong-Hyun;Lee, Chang-No;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.397-418
    • /
    • 2019
  • It is very important to understand and analyze the interactive behaviour between ground and adjacent structures due to tunneling. With many technological advancement in modern society, numerous methods for analyzing the interactive behaviour are used in a wide range of civil engineering fields. Close range photogrammetry is mainly being used in the field of geotechnical engineering and research on measuring methods associated with GeoPIV has been currently increased. Originally, the close range photogrammetry using target points and aluminum rods for VMS (Vision Measurement System) program has been used. However, applying this has a problem that external errors can be occurred because the target points are artificially installed by hand, and if the grid between points is being wider or narrower, deficient data can be obtained. Therefore, in this study, MATLAB-based No-target program that can analyze displacement without using target was developed. Additionally, this study focused on comparison and verification with existing program through numerical analysis and laboratory model test. Three cases of Greenfield condition, Strip foundation, and Pile foundation were analyzed. From results of VMS program and No-target program, the error rate and reliability of the total displacement and the vertical displacement were analyzed. It was also compared and verified through the finite element numerical program, PLAXIS.

Comparison of Two Methods for Analyzing Stress-Strain Behavior of Soil Beam (지반보의 응력-변형률 거동에 대한 해석법 비교)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.294-302
    • /
    • 2018
  • To analyze the behavior of a soil beam under pore water pressure, the results of analytical solutions and finite element analysis (FEM) were compared quantitatively. In contrast to the results of the analytical solution, the horizontal stress obtained from the FEM did not show a symmetrical distribution. On the other hand, the horizontal stress became closer to symmetrical distribution as the number of elements of the soil beam were increased. A comparison of the horizontal stresses from the analytic solution with those obtained from Gaussian points of FEM showed that the magnitude of the tensile stress from the FEM using 3 elements was 6% of the maximum value of the analytical solution and the compressive stress from the FEM using the same elements was 37% of the maximum value of the analytical solution. The magnitude of the tensile stress from the FEM using 6 elements was 61% of the maximum value of the analytical solution and the magnitude of the compressive stress from the FEM using the elements was 83% of the maximum value of the analytical solution. Vertical stresses, which were obtained from the analytical solution, showed a continuous distribution with the depth of the soil beam, whereas the vertical stresses from the FEM showed a discrete distribution corresponding to each element. The results also showed that the average value of the vertical stresses of each element was close to that of the pore water pressure. A comparison of the vertical displacements computed at the near vertical center line of the soil beam from the FEM with those of the analytical solution showed that the magnitude of the vertical displacement from FEM using 3 elements was 35% of the value of the analytical solution and the magnitude of the vertical displacement from FEM using 6 elements was 57% of the value of the analytical solution.

Estimation of installation spacing by analyzing the lateral behavior of the safety fence fixed to rail bottom (레일저부고정형 안전펜스의 횡 방향 거동 분석을 통한 설치간격 산정)

  • Park, Seonghyeon;Sung, Deokyong;Lee, Changho;Jung, Hyuksang;Youg, Seungkyong
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • The number of deaths for railway traffic accidents is mainly caused by working close to the track, or when unauthorized passage pass through the track. The safety fences are being used to ensure safety for workers close to the track, and to improve the efficiency of the work, without interfering with the passage of trains. However, a safety fence for railway tracks needs to be examined to see if it will interfere with the passage of trains. The purpose of this study is to analyze the safe distance between train and safety fence developed in Korea. In addition, the lateral load condition of wind pressure by trains is estimated and numerical analysis is carried out according to the installation intervals of railway safety fences. It has been confirmed that the proper spacing between the train and the railway safety fence should be at least 200 mm from the vehicle limit, and that the proper spacing of railway safety fence must be calculated in consideration of the wind pressure by trains.

Evaluation for Ultimate Flexural Strength of Steel Composite Girder with High Strength Concrete (고강도 콘크리트 강합성 거더의 극한휨강도 실험 평가)

  • Kim, Woon Hak;Lee, Juwon;Lee, Seokmin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.796-805
    • /
    • 2020
  • Purpose: A static loading test was performed to evaluate the ultimate flexural strength of a girder in which 80MPa high-strength concrete was synthesized on the compressive flange of the I-shape steel girder. Method: This test is designed and fabricated two types of specimens with different shear-connection specifications, and evaluated their ultimate flexural behavior until reaching the extreme event limit states. In addition, the ultimate strength was evaluated by comparing the test results and the results of the strain compatibility method. Result: By confirming the displacement within 0.02mm as a result of the relative slip measurement, it was verified that the two specimens secured perfect bonding. Therefore, the difference in the shear specification does not have a great effect on the stiffness, and if the specimens are completely synthesized, there is no difference in the behavior until it reaches the extreme-event limit states. Conclusion: The girder to be tested has a working load within the elastic range and meets the usability requirements for allowable deflection. Therefore, even if a part of the casing is subjected to the tensile force at the level of cracking, the deck will first reach the compression failure due to the role of the reinforcing bar.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.