• Title/Summary/Keyword: 발사반발력

Search Result 3, Processing Time 0.015 seconds

A Study on the Analysis of the Rebounding Force using the 1-DOF Model (1자유도 모델을 사용한 발사반발력 해석에 관한 연구)

  • Yi, Jong-Ju;Kim, Chwa-Il;Kim, Jae-Ho;Ham, Il-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • This paper describes about the analysis of firing rebounding force exerted on the launching system supporting structure. The measured high pressure data at the launching tube is used as external force. The maximum firing rebounding force was occurred when the snubber of inner structure contacts the surface of wall in launching tube.

Study for the Development of a Main Oxidizer Shut-off Valve for Liquid Rocket Engines (발사체 연소기용 산화제 개폐밸브의 핵심요소 기술 개발)

  • Kim, Dohyung;Hong, Moongeun;Park, Jaesung;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.113-119
    • /
    • 2013
  • A main oxidizer shut-off valve (MOV) controls the supply of cryogenic liquid oxygen to the combustion chamber of liquid rocket engines by on/off operations. The main subjects to be introduced are not only the valve transient response during valve on/off procedures but also the characteristics of pneumatic and seat/poppet parts as core technologies in the development of the MOV, which is expected to be adopted for the Korea Space Launch Vehicle II. It is shown that the analytical prediction of the transient valve travel is in good agreement with experimental results. Friction and elastic forces on the valve moving part are quantitatively evaluated by structural analysis.

Analysis of Dynamics Characteristics of an Underwater Platform System (수중 플랫폼 시스템의 동특성 해석 연구)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3345-3351
    • /
    • 2012
  • In this study, simulation of an underwater platform system which is able to perform the underwater test is implemented to predict its dynamic characteristics. Accordingly, its governing equations are derived to construct the mathematical model. From the proposed model, the time in flooding and the pressure of ballast tank in blowing air to come up are predicted. In addition, simulation of the stability of the system for repulsive force of the tube by compressed air is carried out. Their results will be used to select valves, air tanks as well as design the system including ballast tanks. And they will help users operate it efficiently.