• Title/Summary/Keyword: 발끝 궤적

Search Result 2, Processing Time 0.014 seconds

Generation of Walking Trajectory of Humanoid Robot using CPG (CPG를 이용한 휴머노이드 로봇 Nao의 보행궤적 생성)

  • Lee, Jaemin;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • The paper introduces dynamic generation technique of foot trajectories using CPG(Central Pattern Generator). In this approach, the generated foot trajectories can be changeable according to variable outputs of CPG in various environments, because they are given as mapping functions of the output signals of the CPG oscillators. It enables to provide an adaptable foot trajectory for environmental change. To demonstrate the effectiveness of the proposed approach, experiments on humanoid robot Nao is executed in the Webot simulation. The performance and motion features of CPG based approach is analyzed.

A Comparative Study between Genetic Programming and Central Pattern Generator Based Gait Generation Methods for Quadruped Robots (4족 보행로봇의 걸음새에 대한 Genetic Programming 기법과 Central Pattern Generator 기반 생성기법의 비교 연구)

  • Hyun, Soo-Hwan;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.749-754
    • /
    • 2009
  • Two gait generation methods using GP(genetic programming) and CPG(Central Pattern Generator) are compared to develop a fast locomotion for quadruped robot. GP based technique is an effective way to generate few joint trajectories instead of the locus of paw positions and lots of stance parameters. The CPGs are neural circuits that generate oscillatory output from a input coming from the brain. Optimization for two proposed methods are executed and analysed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are experimented in real quadruped robot and performances and motion features of GP and CPG based methods are investigated.