• Title/Summary/Keyword: 발광소자

Search Result 939, Processing Time 0.038 seconds

고분자/저분자 혼합 발광층을 가진 백색 유기발광 소자의 미세구조, 전기적 및 광학적 특성

  • Park, Seong-Jun;Jeon, Yeong-Pyo;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.503-503
    • /
    • 2013
  • 유기발광소자는 기존의 디스플레이에 비해서 빠른 응답속도, 넓은 시야각과 높은 박막 특성으로 백색 조명 광원으로 많은 주목을 받고 있다. 특히 백색 조명 광원 관련 기술은 친환경 에너지와 관련해 주목을 받고 있어 연구가 활발하게 진행되고 있다. 백색 유기발광소자를 제작하기 위해서 청색과 황색의 발광층을 적층하는 방법은 유기물질의 계면에서의 불균일로 인한 효율 저하와 구동전압에 따른 재결합 구역의 변화로 색안정성이 나빠지는 문제점이 있었다. 본 연구에서는 고효율 및 높은 색안정성을 나타내는 백색 유기발광소자를 제작하기 위해 고분자/저분자 혼합 발광층 구조를 사용하였다. 고분자 poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV)와 polystyrene (PS) 혼합물을 스핀코팅하여 박막을 형성한 후, 열처리에 의한 상분리 현상을 이용하여 선택적으로 PS 물질을 제거한 후, MEH-PPV 적색 다공성 고분자 발광층을 형성하였고, 저분자 2-methyl-9,10-di (2-naphthyl) anthracene을 적색 다공성 고분자 발광층 위에 진공증착하여 고분자/저분자 혼합 발광층 구조를 만들었다. MEH-PPV 적색 다공성 고분자 발광층의 혼합 비율을 변화함에 따른 발광층의 미세구조를 원자힘 현미경으로 관찰하였다. 진공증착 후 완성된 고분자/저분자 혼합 발광층을 가진 백색 유기발광 소자의 전류-전압-휘도 측정 결과, MEH-PPV와 PS의 혼합비율이 최적화 되었을 때 안정적인 백색광이 나오는 것을 관측할 수 있었다.

  • PDF

고효율 및 낮은 구동 전압을 가지는 유기물 도핑 p-i-n 유기발광소자

  • Kim, Dae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.394.1-394.1
    • /
    • 2014
  • 고효율 및 낮은 구동 전압을 가지는 유기 발광소자를 제작하기 위한 많은 연구가 진행되고 있다. 고효율 및 낮은 구동전압을 가지는 p-i-n 유기발광소자는 정공수송층에 p형 무기 도펀트를 도핑하고, 전자수송층에 n형 무기 도펀트를 사용하여 제작하지만, 무기 도펀트는 높은 온도에서 증착하기 때문에 챔버 내의 다른 유기 물질들이 함께 증착되거나 유기 박막에 손상을 가져올 수 있는 단점을 가지고 있기 때문에 유기물 n형 도펀트의 경우는 연구가 필요하다. 본 연구에서는 유기 p형 도펀트인 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile과 유기 n형 도펀트인 bis (ethylenedithio)-tetrahiafulene (BEDT-TTF)를 사용하여 p-i-n 구조의 유기 발광소자를 제작하였다. 유기 n형 도펀트인 BEDT-TTF는 전자수송층 사이에서 산화-환원 반응을 통해 많은 전자를 생성하게 되고, 증가한 전자들로 인해서 Al 음극전극과 전자수송층 사이의 에너지장벽이 낮추는 역할을 하게 된다. BEDT-TTF를 도핑하지 않은 유기 발광소자보다 BEDT-TTF를 도핑하였을 때, 100 cd/m2 일때 약 2.4 V 작동 전압의 감소를 관측할 수 있었다. 이 결과는 음극전극으로부터 발광층으로 전자의 주입이 원활하게 되고, 그 결과 낮은 구동전압 및 고효율을 가지는 p-i-n 유기 발광소자를 제작할 수 있다는 것을 보여준다.

  • PDF

ITO 표면의 자기 조립 단일막 형성에 의한 유기 발광 소자의 특성

  • Na, Su-Hwan;Mok, Rang-Gyun;Kim, Tae-Wan;Hong, Jin-Ung;Jeong, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.168-169
    • /
    • 2009
  • 본 연구에서는 ITO 표면 개질에 의한 유기 발광 소자의 특성 변화에 대해서 연구하였다. ITO 전극은 발광 소자의 투명 전극으로 널리 사용되고 있으며 이러한 발광 소자의 특성은 ITO의 표면 상태에 따라 민감하게 반응한다. ITO 표면 개질은 ITO와 유기물 사이의 쇼트기 장벽을 감소시키며, 전극과 유기물의 점착을 향상시켜 준다. 본 실험에서는 습식 처리 방식으로 self-assembled monolayer(SAM)을 사용하였다. 유기 발광 소자의 특성은 SAM 처리에 의해 향상 되었다. 유기 발광 소자는 ITO/SAM/TPD(50nm)/$Alq_3$(70nm)/LiF(0.5nm)/Al(100nm)의 구조로 제작하였으며, ITO의 표면 특성은 일반적인 특성 기술에 의해 연구되었다. SAM 처리된 소자는 SAM 처리하지 않은 소자에 비해 구동 전압, 발광 세기, 외부 양자 효율 등이 향상되었다. ITO의 SAM 처리 시간을 0/10/15/20/25분으로 하여 소자를 제작하였다. 15분간 SAM 처리한 소자는 SAM 처리하지 않은 소자에 비해 외부 양자 효율과 전류 효율이 2.6배 상승하였다. 본 실험을 통하여 ITO 표면 위에 SAM층을 삽입한 걸과, 구동 전압, 발광 세기, 효율 등이 향상됨을 알 수 있었다.

  • PDF

유기물 n형 물질을 사용한 저전압 유기발광소자

  • Kim, Gi-Tae;Lee, Gwang-Seop;Jeon, Yeong-Pyo;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.509-509
    • /
    • 2013
  • 유기발광소자는 빠른 응답속도, 높은 색재현성 및 높은 명암비의 장점을 가지며 차세대 디스플레이로서 소형 및 대형 디스플레이로 각광 받고 있다. 저전압구동 유기발광소자를 제작하기 위해 p-i-n 유기발광소자에 대한 연구가 진행되고 있다. 그러나 p형 물질에 대한 연구는 많이 진행 되었으나 n형 유기물질에 대한 연구는 아직까지 진행되고 있지 않다. n형 무기물질로 알칼리 금속을 많이 사용하고 있지만, 공기 중에 쉽게 산화되고 금속 이온의 확산에 의한 발광층 여기자 소멸 효과에 의한 효율 감소문제가 있다. 또한, 무기물질의 높은 증착온도에 따른 유기층의 손상 문제가 있다. 이러한 문제점을 해결하기 위해 유기물 n형 물질에 관한 연구가 필요하다. 본 연구에서는 n형 유기물 도펀트인 bis (ethylenedithio)-tetrahiafulene (BEDT-TTF)를 4,7-diphenyl-1,10-phenanthroline (BPhen) 전자수송층에 도핑하여 유기발광소자의 전자 수송 능력을 향상하였다. BEDT-TTF의 낮은 증착온도와 공기 중에 산화가 되지 않으며, 유기물을 사용하기 때문에 발광층 여기자 소멸을 방지할 수 있다. 전자수송층에 도핑된 BEDT-TTF 분자는 산화 반응에 의한 전자 증가에 따른 에너지 장벽을 감소시켜 전자의 주입을 향상하였다. BEDT-TTF의 농도에 따른 유기발광소자의 광학적 및 전기적 특성을 각각 관찰하여 BEDT-TTF의 농도에 따른 전자 수송 향상에 따른 저전압 유기발광소자 구동을 관측하였다.

  • PDF

Rubrene 발광층을 가진 유기발광소자의 전자 포획 메커니즘

  • Gwon, Won-Ju;Jeon, Yeong-Pyo;Park, Seong-Su;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.474-474
    • /
    • 2012
  • 유기발광소자는 다른 디스플레이에 비해 높은 명암비와 색재현성의 장점을 갖는 차세대 디스플레이로서, 얇은 박막 특성을 가지고 있기때문에 모바일용 디스플레이 기술로 많이 사용되고 있다. 하지만 낮은 발광효율, 높은 구동전압 및 전압에 따른 색좌표 변화의 문제점을 가지고 있어 이를 극복하기 위한 많은 연구가 진행되고 있다. 유기 발광 소자의 발광효율을 높이며 구동 전압을 낮추기 위해 호스트물질에 다양한 도펀트를 도핑하고 있다. 높은 발광효율을 가지는 도펀트인 5,6,11,12-tetraphenylnaphthacene (rubrene)을 사용한 유기발광소자는 rubrene의 안정된 분자 에너지 레벨로 인해 전자들이 포획되는 현상이 나타나 효율이 감소되는 원인이 규명되지 않았다. 본 연구에서는 rubrene을 발광층으로 사용하여, 전공수송층인 N,N_-bis-(1-naphthyl)-N,N_-diphenyl-1,1-biphenyl-4,4-diamine (NPB)의 두께에 따른 I-V 변화와 전계발광 스펙트럼를 분석하여 두께에 따른 rubrene의 전자 포획를 관찰하였다. rubrene보다 큰 lowest unoccupied molecular orbital 에너지를 갖는 NPB와 에너지장벽으로 낮은 highest occupied molecular orbital 에너지를 갖는 4,7-diphenyl-1,10-phenanthroline을 각각 교차되게 적층한 유기발광소자의 I-V 변화와 전자 전공 재결합층의 위치변화에 따른 전계발광 스펙트럼을 비교 분석하였다. 이 결과는 발광층 내부의 rubrene의 상대적인 위치와 에너지장벽과의 상관관계에 따른 전자 포획 메커니즘을 이해하는데 도움 줄 것이다.

  • PDF

The recent trend of organic electroluminescent devices (유기 전계발광 소자의 최근의 개발동향)

  • 구할본;김주승;조재철
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.208-215
    • /
    • 1996
  • 본 고에서는 최근 주목받고 있는 적층형 유기 전계발광소자의 일반적 형태와 발광특성등에 대해 알아보고자 한다. 현재 완전한 유기 전계발광소자의 개발을 위해 캐리어 수송재 즉, 정공수송재와 전자수송계의 캐리어 수송능력을 증가시키기 위해서 여러가지 새로운 물질들이 연구되고 있으며, 고효율의 발광특성을 얻어내기 위한 발광재료의 개발과 동작시의 안정성을 향상시키기 위한 소자구조의 개선에 대해서도 연구가 국내외적으로 활발히 진행되고 있다. 특히, 조만간 일본에서 30cd/m$^{2}$의 휘도를 갖는 적층형 유기 전계발광 소자가 상용화 될것으로 알려져있어 이를 계기로 고휘도, 고효율의 유기 전계발광 소자의 개발이 가까운 시일내에 이루워지리라 전망된다.

  • PDF

p형 불순물이 첨가된 정공 수송층을 사용한 녹색 유기발광소자의 전하전송 메카니즘

  • Lee, Gwang-Seop;Chu, Dong-Cheol;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.424-424
    • /
    • 2010
  • 유기발광소자는 전류구동소자로서 소자를 대형화할 때 소모 전력이 급격히 증가하여 다른 디스플레이 제품에 비해 더욱 더 높은 전력효율을 요구한다. 높은 전력효율과 낮은 구동전압을 갖는 유기발광소자를 제작하기 위해서 P-I-N구조의 유기발광소자에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 일함수가 큰 투명 Indium Tin Oxide (ITO) 양극 위에 p 형 불순물인 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4-TCNQ) 를 4,4',4"-tris(N-(2naphthyl)-N-phenylamino)triphenylamine (2-TNATA)에 도핑하여 정공주입 및 정공수송을 향상하였으며, 그위에 N,N'-bis(1-naphthyl)-N,N'-diphenyl- 1,1'-biphenyl-4,4'-diamine (NPB) 층을 증착 후, tris-(8-hydroxyquinoline) aluminum ($Alq_3$) 발광층과 전자 수송층으로 사용하여 전자와 정공이 재결합을 하여 엑시톤을 형성하여 녹색 빛을 측정하였다. p 형 불순물은 정공 수송층의 에너지 장벽을 감소하며 발광층으로의 정공주입량을 증가하는 역할을 하여 구동전압을 감소하였으나 발광층내에서 전자와 정공의 비를 불균일하게 하여 발광효율은 약간 감소하였다. p형 불순물인 F4-TCNQ의 도핑의 농도에 따라 측정된 발광특성의 변화로부터 정공의 전송 메카니즘을 분석하였으며 이는 p형 불순물 첨가된 녹색 유기발광소자의 전하수송 메카니즘을 이해하는데 중요한 자료를 제공할 것이다.

  • PDF

Influence of Fluorescent Dye Doping on Efficiency of Red Organic Light-emitting Diodes (형광염료 도핑이 적색 유기 발광 소자의 효율에 미치는 영향)

  • Lee, Jeong-Gu;Lim, Kee-Joe
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.18-24
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/ Znq2+DCJTB /Znq2/Al and the structure of ITO/CuPc/NPB/ Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

유기 EL 디스플레이의 개요, 재료 및 연구 동향

  • 박준영
    • Electrical & Electronic Materials
    • /
    • v.15 no.12
    • /
    • pp.3-10
    • /
    • 2002
  • 유기 전계발광 소자는 발광성 유기화합물을 양극과 음극사이에 형성한 후 전기적으로 여기시켜 그 발광을 이용하는 디스플레이로 1960년도에 처음 전기 적 발광현상이 안트라센 물질에서 처음 보고되었다[1]. 그 후 1987년에 코닥(Kodak)사의 Tang에 의해 적층형 유기 전계발광 소자가 처음 연구되어 소개된 후 실용화를 목표로 활발히 연구되기 시작하였으며[2], 1990년도 들어서는 유기물 재료 중에 전도성 고분자형 재료의 전기적 발광현상이 영국의 케임브리지 대학에서 보고되어 고분자형 유기 전계발광 소자연구가 진행되기 시작하였다[3]. 유기 전계발광 디스플레이는 평판 디스플레이의 한 종류로서 저전압 구동, 박형, 자체발광에 인한 고인식성 및 넓은 시야각, 빠른 응답속도 등의 많은 장점을 갖고 있어 현재 널리 사용되는 액정 디스플레이의 결점을 해결해줄 수 있는 차세대 디스플레이로 최근 들어 매우 높은 관심을 받고 있으며 연구개발 또한 가장n 활발한 분야로 알려져 있다 현재는 저분자형 유기물을 사용하는 저분자 유기 전계발광 소자와 전도성 고분자를 사용하는 고분자 유기 전계발광 소자가 전자발광 디스플레이 연구의 두 분야로 경쟁하면서 연구가 진행되고 있다. 이에 1990년도 후반부터 디스플레이로의 연구가 일본에서부터 활발히 진행되면서 수동형 (Passive Matrix) 구동의 유기 EID가 일본의 Pioneer,한국의 삼성 SDI등에 의해서 상업화되었다. 현재는 카오디오나 핸드폰 등에 이미 채용이 되고 있으며 일반인들이 쉽게 볼 수 있는 디스플레이로 바뀌어가고 있다. 또한 향후 중대형 디스플레이로 상업화하기 위하여 일본의 Sony, Sanyo, Toshiba, 한국의 삼성 SDI 등에서 능동구동 유기 EL (Active Matrix OLED (AM OLED))를 경쟁적으로 개발하고 있다. (그림 1 참조)유기 ELD는 이와 같이 빠른 속도로 발전하고 있으며, 향후 몇 년 내에 우리 주변의 일상적 인 디스플레이로 등장할 것으로 판단된다. 본 보고서에서는 현재 실용화가 급속히 진전되고 있는 유기 전계발광 디스플레이의 소자구조, 발광기구. 소자특성, 각종 재료, 풀컬러화 기술, 구동방법등에 대한 기술개요와 국내외 기술동향에 대하여 소개하고자 한다.

  • PDF

홀 주입 층으로 사용한 자기조립박막층에 의한 유기발광소자의 효율 향상

  • Kim, Min-Seong;Jeon, Yeong-Pyo;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.395.1-395.1
    • /
    • 2014
  • 차세대 디스플레이 소자 기술로 많은 주목을 받고 있는 유기발광소자는 현재 전류효율 향상과 낮은 구동전압과 관련하여 연구가 활발하게 진행되고 있다. 음극과 양극 전극에서 유기물 층으로 전자와 정공의 주입이 많아져도 유기발광 층에서 재결합하는 전자와 정공의 균형이 맞지 않으면 전류 효율과 휘도가 낮아지는 문제점이 있다. 유기발광소자에서 홀 주입 층으로 사용하는 자기조립박막층은 일반적인 유기발광소자에서 정공의 이동도가 낮은 단점을 보완하여 발광층에서 전자와 정공의 균형을 향상하여 전류효율을 향상과 낮은 구동전압 특성을 나타낸다. 본 연구에서는 홀 주입 층으로 사용되는 각각의 자가조립박막을 형성할 물질이 용해되어 있는 에탄올 용액에 ITO를 담가 자가조립박막을 ITO 위에 형성 시킨다. 각각의 홀 주입 층으로 사용된 자가조립박막층의 chain group의 길이와 ITO와 결합하는 head group에 따라 달라지는 쌍극자 모멘트에 의한 홀 주입의 변화를 통해 각 소자의 전류효율과 구동전압 관찰할 수 있었다. 자가조립박막층의 chain group의 길이가 길어질수록 전극으로부터 유기물 층으로의 홀 주입을 방해하여 발광 층에서의 전자와 정공의 재결합 균형이 무너짐으로써 전류효율과 휘도가 낮아지는 경향을 볼 수 있었다. 이 연구 결과는 자가조립박막층을 홀 주입 층으로 대체하는 구조로 유기발광소자의 효율 향상에 대한 기초자료로 활용할 수 있다.

  • PDF