• Title/Summary/Keyword: 반응 메카니즘

Search Result 552, Processing Time 0.03 seconds

Kinetics and Mechanism for Aquation of $[Co(en)_2Cl_2]^+$ in the $Hg^{2+}$ Aqueous Solution ($Hg^{2+}$수용액에서 $[Co(en)_2Cl_2]^+$의 아쿠아 반응속도론과 메카니즘)

  • Byung-Kak Park;Joo-Sang Lim;Sung Nak-Jung;Il-Bong Lee;Kwang-Jin Kim;Sung-Gu Kang
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.342-350
    • /
    • 1988
  • An experimental investigation is made to determine the mechanism of the aquation of $[Co(en)_2Cl_2]^+$ in $Hg^{2+}$ aqueous solution. The progress of reaction is followed UV/vis-spectrophotometrically by a measurment of the absorbance at a specific wavelength of Co(III) complex as a function of time. The aquation of cis-$[Co(en)_2Cl_2]^+$ and trans-$[Co(en)_2Cl_2]^+$ has been found to be first order and second order with respect to the concentration of $Hg^{2+}$ catalyst, respectively. It has been found that the reaction rate for aquation of the trans-form is faster than that of cis-form, and that the product of either cis-form or trans-form is always in the mixture ratio of 97 % to 3 %. Plausible reaction mechanism is proposed for the reaction system on the basis of kinetic data and activation parameters. Theoretical rate equation derived from the proposed mechanism is consistent with the observed one.

  • PDF

Hydrothermal Kinetics and Mechanisms of Lime and Quartz Used Solid State Reaction Equations (고상반응식을 이용한 석회-석영의 수열반응속도와 반응메카니즘)

  • Lim, Going
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.223-233
    • /
    • 1998
  • The kinetic and mechanism of the hydrothermal reaction between lime and quartz used solid state reaction equations have been investigated. Hydrothermal reaction on the starting materials was carried out in an autoclave that quartz mixed with calcium hydroxide in CaO/$SiO_2$ ratio of 0.8-1.0 for 0.5-8 hour at saturated steam pressure of $180-200^{\circ}C$. The rate of reaction was given from the ratio of uncombined lime and quartz content to the total lime and quartz content. The rate of reaction was obtained the results by the Jander's equation $[1-(1-\alpha)^{1/3}]^N=Kt$. The reaction of lime is controlled mainly by the dissolution such as N=1, and the reaction of quartz is controlled mostly by the diffusion such as $N\risingdotseq2$. The rate of hydrothermal reaction in the calcium silicate hydrates system is suggested to be determined generally by the mass transfer through the product laver formed around the reactant particles. The rate equation for whole hydrothermal reaction is shown that it is converted into the rate determining step by the diffusion from the boundary reaction such as approximately $N=1-2$.

  • PDF

Adaptive Usage Parameter Control Mechanism using a Variable Token Pool in ATM Networks (ATM망에서 가변 토큰풀을 이용한 적응적 사용 파라메터 제어 메카니즘)

  • Koo, Ja-Gwang;Lee, Hwan-Chung;Kim, Chong-Gun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2366-2377
    • /
    • 1997
  • An Adaptive Usage Parameter Control(UPC) mechanism using a Variable Token Pool(VTP) which is kind of preventive traffic control in the Asynchronous Transfer Mode(ATM) networks is described. The VTP mechanism can monitor violations of the average bit rate and burst duration as well as peak bit rate for the ON-OFF type traffic. The VTP can vary the token pool size by monitoring burst duration and silence duration for a long term. It also improves the sensitivity against the violation of burst duration and average bit rate and enables to response for the violating traffic situation quickly. The variable token pool size is varied in step size by every burst duration and silence duration. Two important parameters for controlling token pool size are Down_size and Up_size. We compare the performance of LB and JW mechanism with the proposed VTP mechanism by computer simulations. We have known that the proposed method is more effective than the previous mechanisms. It is shown that the cell loss rate of the VTP quite depends on the value of Down_size and Up_size. The two parameters should be decided as a propr value according to traffic situations.

  • PDF

Rates and Mechanism of the Reactions of Aquaoxomolybdenum (IV) Trimer with Vanadium (V) (아쿠아옥소몰리브덴(IV) 삼합체 착물과 바나듐(V)과의 반응에 대한 속도와 메카니즘)

  • Chang-Su Kim;Moon-Pyoung Yi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.178-183
    • /
    • 1987
  • The kinetics of the reaction of $[Mo_3O_4(H_2O)_9]^{4+}$ with $VO_2^+$have been studied at $25^{\circ}C$ by spectrophotometric method. With$VO_2^+$ in excess, the $[Mo_3O_4(H_2O)_9]^{4+}$ reaction can be expressed as $Mo^{IV}_3+6V^V{\rightleftarrows}3Mo^{IV}+6V^IV}$. Observed rate constants for the reaction are dependent on [$H^+$] and [$VO_2^+$]. Mechanism for the redox of $[Mo_3O_4(H_2O)_9]^{4+}$and $VO_2^+$ is proposed and discussed.

  • PDF

Kinetics and Mechanism of the Hydrolysis of an Arylmethylenemalononitrile (Arylmethylenemalononitrile의 가수분해반응메카니즘과 그의 반응속도론적 연구)

  • Tae-Rin Kim;Mu-Ill Lim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.130-135
    • /
    • 1973
  • The rate-constants of hydrolysis of 3, 4-methylenedioxyphenylmethylenemalononitrile are determined by ultraviolet spectrophotometry at various pH and a rate equation which can be applied over wide pH range is obtained. The rate equation reveals that below pH 5.0 and above pH 9.0, the hydrolysis is initiated by the addition of water and hydroxide ion respectively. However, at pH 6.0-8.0 the competitive addition of water and hydroxide ion occurs. The catalytic contribution of hydroxide ion and water can be fully explained by the rate equation obtained.

  • PDF

Nucleophilic Substitution at a Carbonyl Carbon Atom (Ⅷ). Kinetics and Mechanism of the Reactions of Chloroformates with Substituted Anilines and Halides (카르보닐 탄소원자의 친핵성 치환반응 (제8보). 염화포름산물과 치환아닐린 및 할라이드와의 반응에 관한 속도론적 연구)

  • Cho Won-Jei;Kim Jack C.;Lee Euk-Suk;Lee Ikchoon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 1976
  • Rate constants for the reaction of methyl chloroformate with substituted anilines, and for the halogen exchanges in phenyl chloroformate have been determined in acetone. Although the rate data can be interpreted equally well with the addition-elimination mechanism($S_AN$) involving an intermediate, results of MO and isotope effect studies strongly favor the synchronous ($S_N2$) mechanism for the reactions studied. It was concluded that for the fast reacting nucleophiles the transition state is of "late" type while for the slow reacting nucleophiles it is of "early" type.

  • PDF

The Effect of Pressure on the Reaction of p-Substituted Benzoyl Chlorides with Pyridine (염화벤조일류와 피리딘과의 반응에 대한 압력의 영향)

  • Young Cheul Kim;Jin Burm Kyong;Se Kyong Kim;Deog Ja Koo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.180-184
    • /
    • 1992
  • Kinetic studies for the reaction of pyridine with substituted benzoyl chlorides were conducted under various pressures (1-1000 bar) in acetonitrile. From rate constants, the activation parameters (${\Delta}V^{\neq}$, ${\Delta}{\beta}^{\neq}$,${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$ and ${\Delta}G^{\neq}$) were evaluated. Rates of these reaction increased with an increase in the pressure. The activation volume, the activation compressibility coefficient and the activation entropy were negative. From substituents effect and these results, it was found that these reactions proceed through $S_N2$ mechanism, but the structure of transition state was slightly changed with substituents and pressure.

  • PDF

The Solvolytic Reaction Mechanism of p-Substituted Benzyl Bromides (파라-치환 브롬화 벤질의 가용매 분해반응 메카니즘)

  • Lee, Ik Chun;Eom, Tae Seop;Sung, Dae Dong;Lee, Jong Pal;Park, Hyeon Seok
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 1990
  • Solvolyses of p-substituted benzyl bromides have been studied in dimethylsulfoxide-water and N,N-dimethylformamide-water mixtures by kinetic method. To determine the ionizing power, Y and the nucleophilicity, $N_{BS}$, the solvolyses of 1-adamantyl halides, t-butyl halides, and methyl tosylate in the same solvent mixtures have been investigated. The solvatochromic parameters for each dimethylsulfoxide-water mixtures have been determined by substituting into the Taft's linear solvatochromic energy relationships with measured $ν_{max}$. The solvolyses of p-substituted benzyl bromides have been found to proceed by borderline mechanism in which bond formation is more advanced than bond cleavage in the transition state based on the m, l values and ${\beta},{\rho}_s$, values.

  • PDF