• Title/Summary/Keyword: 반응차수

Search Result 154, Processing Time 0.019 seconds

Development of Alkali Stimulant-Based Reinforced Grouting Material from Blast Furnace Slag Powder (고로슬래그 미분말을 이용한 알칼리자극제 기반의 보강그라우트재 개발)

  • Seo, Hyeok;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Grouting is used for reinforcement and waterproofing of soft ground to increase its bearing capacity, reduce the impacts of rising or lowering groundwater levels, and reduce subsidence due to vibration and general causes. This study investigated the enhancement of grout strength and hardening time by the addition of reinforcing fibers, and the development of non-cement grouting materials from blast furnace slag. An experiment was performed to measure the increase in grout strength resulting from the addition of 0.5% increments of aramid and carbon reinforcing fibers. The results show that the uniaxial compressive strength of grout increases with increasing content of reinforcing fiber. Comparison of three admixtures of finely powdered blast furnace slag and 10%, 20%, and 30% calcium hydroxide stimulating agent showed that the uniaxial compressive strength of the mixture increases with increasing content of alkaline stimulant; however, the strength was lower than for 100% pure cement. The reaction of calcium hydroxide with blast furnace slag powder, which increases the strength of the grout, is more effective if injected as a solution rather than a powder.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Effect of Carbonation Curing on the Hydration Properties of Circulating Fluidized Bed Boiler Ash (탄산화 양생이 순환유동층 보일러 애시의 수화특성에 미치는 영향)

  • Soo-Won Cha;Shi-Eun Lee;Won-Jun Lee;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • In this study, the hydration and carbonation properties of circulating fluidized bed boiler (CFBC) ash with different free-CaO contents were investigated. In addition, the possibility of utilizing CFBC ash with a high free-CaO content as a cementitious material was investigated by carbonation curing as a pretreatment. The CFBC ash with high free-CaO content exhibited rapid setting behavior and low early compressive strength when mixed with cement. For CFBC ash with high free-CaO content, carbon dioxide capture increased with the duration of carbonization curing. In addition, the free-CaO value decreased together, indicating that the free-CaO reacted with carbon dioxide. When the CFBC ash with high free-CaO content was pretreated by carbonation, no fresh set appeared, and the initial compressive strength was improved. From the results of this study, it is confirmed that CFBC ash with high free-CaO content has a high potential to be utilized as a cementitious material through proper carbonation curing.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.