• Title/Summary/Keyword: 반응경로모델링

Search Result 26, Processing Time 0.022 seconds

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Mathematical Modeling of the Influence of HBV on the NF k B signaling pathway (간염 바이러스 감염이 NF$_k$ B pathway에 끼치는 영향의 수학적 모델링)

  • 이태형;박근수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.733-735
    • /
    • 2004
  • 생명 현상을 시스템적으로 이해하기 위해서는 현상에 대한 수학적 모델링이 필수적이다. 여러 가지 수학적 모델 가운데 상미분 방정식(ODE) 모델은 여러 가지 생화학 반응을 모델링 하는데 널리 사용되고 있다. 본 논문에서는 신호전달 경로에 B형 간염 바이러스가 미치는 영향을 ODE로 모델링하고, 이를 시뮬레이션 한 결과를 보인다. 또한, ODE모델을 설계하는데 있어 보다 유연하고 확장 가능한 새로운 표현 방식을 제안한다.

  • PDF

Genesis of Bonanza-style Ores in Uichang Area, Changwon City: Geochemical Interpretation by Reaction Path Modeling (창원시 의창지역 보난자형 금광상 성인 : 반응경로 모델링에 의한 지구화학적 해석)

  • Lee, Seung-han;No, Sang-gun;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • Gold mineralization of Samjeong and Yongjang gold mines in Uichang area shows characteristics of Bonanza-type gold deposits. Ores are mainly developed along the contact parts between quartz vein and arkosic sandstone beds(Fe-rich bed) in sedimentary rock. Electrum, silver sulfide and sulfate minerals are mainly in the ores. On the other hand, gold mineralization is less developed in cherty rock and andesitic rock than arkosic sandstone. The study highlights characteristics of gold precipitation in the deposit on the basis of numerical modelling of the reactions between the assumed hydrothermal ore fluids with multicomponent heterogeneous equilibrium calculations. Aqueous species, gases and minerals, containing electrum are included in the calculations. The reaction result between hydrothermal ore fluids and arkosic sandstone show that pH increasing in the ore-forming fluid would trigger precipitation of quartz, chlorite, sericite, chalcopyrite, galena, pyrite, electrum, actinolite and feldspar. The numerical modelling also illustrates the drastic increase of pH and desulfidation lead to precipitation of electrum. Ag/Au ratios in the ore vary with pH conditions and subsequently precipitation of silver-bearing sulfides such as acanthite and polybasite. The modelling of the reaction between andesitic rock and ore-forming fluid shows that mineral assemblages of the case are analogous to ones of the reaction between arkosic sandstone and fluid except the latter has little portion of electrum. The abovementioned modelling results suggest that gold-silver mineralization is bounded by host rocks at the study area.

First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis (전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링)

  • Mihyeon Cho;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.598-603
    • /
    • 2023
  • Electrochemical ammonia production using catalysts offers a promising alternative to the conventional Haber-Bosch process, allowing for ambient temperature and pressure conditions, environmentally friendly operations, and high-purity ammonia production. In this study, we focus on the nitrogen reduction reactions occurring on the surfaces of ruthenium catalysts, employing first-principles calculations. By modeling reaction pathways for nitrogen reduction on the (0001) and (1000) surfaces of ruthenium, we optimized the reaction structures and predicted favorable pathways for each step. We found that the adsorption configuration of N2 on each surface significantly influenced subsequent reaction activities. On the (0001) surface of ruthenium, the end-on configuration, where nitrogen molecules adsorb perpendicularly to the surface, exhibited the most favorable N2 adsorption energy. Similarly, on the (1000) surface, the end-on configuration showed the most stable adsorption energy values. Subsequently, through optimized hydrogen adsorption in both distal and alternating configurations, we theoretically elucidated the complete reaction pathways required for the final desorption of NH3.

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF