• Title/Summary/Keyword: 반음영

Search Result 46, Processing Time 0.023 seconds

An Effect of Time Gating Threshold (TGT) on the Delivered Dose at Internal Organ with Movement due to Respiration (호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold (TGT)의 효과)

  • Kim Yon Lae;Chung Jin Bum;Chung Won Kyun;Hong Semie;Suh Tae Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • In this study, we investigated the effect of time gating threshold on the delivered dose at a organ with internal motion by respiration. Generally, the internal organs have minimum motion at exhalation during normal breathing. Therefore to compare the dose distribution time gating threshold, in this paper, was determined as the moving region of target during 1 sec at the initial position of exhalation. The irradiated fields were then delivered under three conditions; 1) non-moving target 2) existence of the moving target in the region of threshold (1sec), 3) existence of the moving target region out of threshold (1.4 sec, 2 sec). And each of conditions was described by the moving phantom system. It was compared with the dose distributions of three conditions using film dosimetry. Although the treatment time increased when the dose distributions was obtained by the internal motion to consider the TGT, it could be obtained more exact dose distribution than in the treatment field that didn't consider the internal motion. And it could be reduced the unnecessary dose at the penumbra region. When we set up 1.4 sec of threshold, to reduce the treatment time, it could not be obtained less effective dose distribution than 1 sec of threshold. Namely, although the treatment time reduce, the much dose was distributed out of the treatment region. Actually when it is treated the moving organ, it would rather measure internal motion and external motion of the moving organ than mathematical method. If it could be analyzed the correlation of the internal and external motion, the treatment scores would be improved.

  • PDF

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF

Introduction and feasibility study of the HD-270 MLC (HD-270 MLC의 소개 및 유용성평가)

  • Kim Dae Young;Kim Won Taek;Lee Hwa Jung;Lee Kang Hyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • I. Purpose The multileaf collimator(MLC) has many advantages, but use of the MLC increased effective penumbra and isodose undulation in dose distribution compared with that of an alloy block. In this work, we introduced the HD-270 MLC, which can improve the above disadvantages of MLC, and reported its feasibility study. II. Method and Materials The HD-270 MLC is a technique which combines the use of the existing Siemens multileaf collimator(3D MLC) with patient translation perpendicular to the leaf plane. The technique produces a smoothed isodose distribution with the reduced isodose undulation and effective penumbra. To assess the efficacy of the HD-270 technique and determine the appropriate resolution, a polygonal shaped MLC field was made to produce field edge angles from 0 degree to 75 degree with a step of 15 degree. Each HD-270 group was generated according to the allowed resolution, i. e., 5, 3, and 2mm. The experiment was carried out on Primus, a Siemens linear accelerator configured with HD-270 MLC. The total 60 MU of 6 MV photon beam was delivered to X-Omat film(Kodak, USA) at a SAD of 100 cm and 1.5 cm depth in solid water phantom. Exposed films were scanned by Lumiscan75(LUMISYS) and analyzed using RIT113 software(Radiological Imaging Technology Inc., USA). To test the mechanical accuracy of table movement, the transverse, longitudinal, and vertical positions were controlled by a consol with ${\pm}5\;mm,\;{\pm}4\;mm,\;{\pm}3\;mm,\;and\;{\pm}2\;mm$ steps, and then measured using a dial gauge with an accuracy of 0.001 inch. During the experiments, the table loaded with about 50Kg human phantom to simulate the real treatment situation. III. Results The effective penumbra and isodose undulation became larger with increase the resolution and field edge angle. The accuracy of the table movement on each direction is good within the ${\pm}1\;mm$. IV. Conclusion Clinical use of the MLC can be increased by using of the HD-270 MLC which complements to the disadvantages of the MLC.

  • PDF

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.

Comparison of Noise Power Spectrum Methodologies in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료시 전자포털영상장치를 이용한 잡음전력스펙트럼 방법론 측정비교)

  • Son, Soon-Yong;Choi, Kwan-Woo;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.99-105
    • /
    • 2016
  • The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeam$^{TM}$(Varian), BEAMVIEW$^{PLUS}$(Siemens), iViewGT(Elekta) and Clinac$^R$ iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEW$^{PLUS}$ (Siemens), TrueBeam$^{TM}$(Varian) flattening filter, Clinac$^{R}$iXaS1000(Varian) and TrueBeam$^{TM}$(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF