• Title/Summary/Keyword: 반사파 계수

Search Result 143, Processing Time 0.017 seconds

Measurement of the Skin Blood Flow using Cross-Correlation (Cross-Correlation법에 의한 피부 혈류속도 측정)

  • Lee, Jeong-Taek;Im, Chun-Seong;Ryu, Jeom-Su;Lee, Jong-Su;Gong, Seong-Bae;Kim, Yeong-Gil
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 1998
  • To measure precisely the blood velocity in the skin microcirculation, we have used time domain correlation (called Cross-Correlation) based on the processing of the backscattered RF signal obtained with a wideband echographic imaging transducer, although it is difficulties of adaptation of the pulsed wave system, because of the data processing in real time and the hardware problem. This dedicated technology based on a 20MHz echographic imaging system has been developed. We present how the experimental data, i.e. the backscattered RF signal, have to be analyzed. After RF lines realignment, stationary echo canceling procedure and correlation level control, a velocity profile has been obtained. In-vitro result show that velocity measurements as low as 0.1mm/sec attainable with a 80${\mu}m$ in axial resolution. We have also validated with in-vivo experimentation on the external ear of a rabbit using B-mode sector scanning image and M-mode image of a custom made 20MHz skin image system. The flow of the "auriculares caudales" vein, a microvessel of 600 m diameter, has been detected and studied. This technique will allow a more precise exploration of circulatory troubles in cutaneous pathologies.

  • PDF

Scattering Model of TM Polarized Electromagnetic Wave by Finite I-Shaped Metamaterial Array Based on Surface Current Model (표면 전류를 기반으로 한 유한 배열 I-모양 메타물질의 TM 편파 전자기 산란 모델)

  • Jang, Ji-Woong;Lee, Haeseung;Koh, Il-Suek;Seo, Ilsung;Lee, Yongshik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.664-670
    • /
    • 2014
  • Generally, the properties of metamaterials are analyzed based on the infinite array of the unit cells. In real application of the metamaterial, however, the array has to be finite. Hence, it is important that a method can analyze the effect of the finite array of the metamaterial. In this paper, a model is proposed which can calculate the scattering by a large-size finite array of an I-shaped metamaterial without a full-wave simulation. The proposed model is based on the surface current estimation of each unit cells. The ratio of the current distribution on a finite array of the metamaterial to that of the infinite array of the same metamaterial for a TM polarized incident wave is approximated as a quartic polynomial. The coefficients of the polynomial are a function of the physical dimension of the metallic patch. Hence, the current distribution of the finite metamaterial can be estimated based on the proposed polynomial and the current of the infinite array. The scattered field is calculated by using the surface current model. The proposed model is numerically and experimentally verified by comparing calculated and measured RCS(Radar Cross Section) data.

Effect of Animal Organic Soil Amendment on Growth of Korean Lawngrass and Kentucky Bluegrass (동물성 유기질 개량재가 들잔디 및 캔터키 블루그래스 잔디생육에 미치는 효과)

  • Koh, Seuk-Koo;Tae, Hyun-Sook;Ryu, Chang-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • Many soil amendments have been used nowadays to improve physical and chmical condition of turf soil, which might ultimately optimize turfgrass growth in golf courses. This study was carried out to Investigate the effects of new organic soil amendment containing pig excreta 50% and sawdust 50% on growth of zoysiagrass (Zoysia japonica L.) and kentucky bluegrass (Poa pratensis L.) in greenhouse. Three applicable treatments with soil mixtures of 10, 20, and 30% (v/v) animal organic soil amendment (AOSA) with sand, were tested for chemical property, physical property, visual quality and root length of zoysiagrass and Kentucky bluegrass. As results, application of $10{\sim}30%$ AOSA mixtures were proper to grow turfgrass in soil nutrition. Especially, the treatment with 20% AOSA mixtures showed 0.7% in organic matter, which meets to green standard of USGA. Also, 30% AOSA mixtures was 1.1% in organic matter, which might be desirable for zoysiagrass-planted golf courses in Korea. It was turned out that addition of AOSA decreased the hydraulic conductivity in soil physical property Because the sand possess high hydraulic conductivity, it is recommended to combine $10{\sim}30%$ AOSA with sand in order to sustain soil balance. The treatment with $10{\sim}30%$ AOSA noticeably increased visual quality of both zoysiagras and Kentucky bluegrass during 90 days. However, treatments with either 20% or 30% AOSA were effective to develop root length of zoysiagrass but treatments with 20% AOSA were more effective than that of 30% AOSA mixtures to promote root length of Kentucky bluegrass at 60 days. In conclusion, considering all vital factors such as visible quality, root growth, organic matter content, and economical efficiency, was taken, it is recommended that a $20{\sim}30%$ mixture of AOSA with sand is good for the growth of zoysiagrass and 20% mixture for Kentucky bluegrass.