• Title/Summary/Keyword: 반사적 영향

Search Result 720, Processing Time 0.029 seconds

Baseline Survey Seismic Attribute Analysis for CO2 Monitoring on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 CCS 프로젝트의 이산화탄소 모니터링을 위한 Baseline 탄성파 속성분석)

  • Cheong, Snons;Kim, Byoung-Yeop;Bae, Jaeyu
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • $CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.

An Oral History Study of Overseas Korean Astronomer: John D. R. Bahng's Case (한국천문연구원 원외 원로 구술사연구 - 방득룡 전임 노스웨스턴 대학교 천문학 교수 사례 -)

  • Choi, Youngsil;Seo, Yoon Kyung;Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.73.4-74
    • /
    • 2021
  • 한국천문연구원은 2017년 제1차 구술채록사업에 이어 2020년 제2차 사업을 진행하면서 최초로 원외 원로에 대한 구술채록을 시도하였다. 국가 대표 천문연구의 산실로서 연구원 존재 의의를 확립하기 위하여 원내 원로에 국한되었던 구술자 대상을 확장한 것이다. 그 첫 외부 구술 대상자로 방득룡 전임 노스웨스턴 천문학과 교수를 선정하여 2020년 7월부터 준비단계에 들어갔다. 방득룡 전(前)교수가 첫 번째 한국천문연구원 원외 인사 구술자로 선정된 이유는, 그가 우리나라 천문대1호 망원경 구매 선정에 개입한 서신(1972년)이 자료로 남아있었기 때문이다. 한국천문연구원에서 2017년에 수행한 제1차 구술채록사업에서 구술자로 참여한 오병렬 한국천문연구원 원로가 기증한 사료들은 대부분 연구원 태동기 국립천문대 구축과 망원경 구매 관련 자료였으며 이 가운데 1972년 당시 과학기술처 김선길 진흥국장에게 Boller and Chivesns(사(社))의 반사경을 추천한 방득룡 전(前)교수의 서신은 한국 천문학 발전사에서 중요한 사료였다. 연구진은 이 자료를 시작으로, 방득룡 전(前)교수의 생존 여부와 문서고의 공기록물들에서 그의 흔적을 찾아가기 시작했다. 놀랍게도 그는 실제 세계와 한국천문연구원 문서고 깊숙이 기록물들 모두에서 상존하고 있었다. 1927년생인 방득룡 전(前)교수, Dr. John D. R.은 미국 플로리다 한 실버타운에서 건강한 정신으로 생존하여 있었고 연구진의 인터뷰에 흔쾌히 응했다. 2020년 9월 16일에 한국천문연구원 본원 세종홀 2층 회의실에서 영상통신회의로 그와의 구술인터뷰가 진행되었다. 이 구술인터뷰는 원외 인사가 대상이란 점 외에도 방법적으로는 전형적인 대면 방식이 아닌 영상 인터뷰였다는 점에서 코로나 시대의 대안이 되는 실험적 시도였다. 현대 한국천문학 발전사의 재조명 측면에서도 의미가 있었다. 1960년대 초반부터 1992년 정년퇴임까지 30년을 미국 유수 대학교 천문학과 교수로 재직하며 활발한 활동을 해 온 한국계 천문학자가 우리나라 최초 반사망원경 구매 선정에 적극 개입하였던 역사는, 공문서 자료들과 서신 사료들에 이어 그의 육성으로 나머지 의구심의 간극이 채워졌다. 또 구술자 개인이 주관적으로 중요하다고 여기는 '기억'이 중요한 아카이빙 콘텐츠 확장의 단초가 될 수 있다는 것을 보여줌으로써 구술사 연구에 있어서도 중요한 관점을 주었다. 애초 연구진이 방득룡 전(前)교수의 공식 기록에서 아카이빙의 큰 줄기로 잡았던 것은 1948년 도미, 1957년 위스콘신 대학교 천문학 박사학위 취득, 1962년부터 노스웨스턴 대학(일리노이주 에반스턴)의 천문학 교수진, 1992년 은퇴로 이어진 생애였다. 그러나 그와의 구술 준비 서신 왕래와 구술을 통하여 알게 된 그가 인생에서 중요시 여겼던 지점은, 1948년 도미 무렵 한국의 전쟁 전 상황과 당시 비슷한 시기에 유학한 한국 천문학자들의 동태, 그리고 1957년부터 1962년까지 프린스턴 대학교에서 M. Schwarzschild 교수와 L. Spitzer 교수를 보조하며 Stratoscope Project를 연구하였던 경험이었다. 기록학적 의미에서도, 전자를 통해서 그와 함께 동시대 한국 천문학을 이끌었던 인재들의 맥락정보를 얻을 수 있었으며, 후자를 통해서는 세계 천문학사에 큰 영향을 미친 석학에 대한 아카이브 정보와의 연계 지점과 방득룡 전(前)교수의 연구 근원을 찾을 수 있었다. 이들은 추후 방득룡 콘텐츠 서비스 시에 AIP, NASM, Lyman Spitzer 콘텐츠, 평양천문대, 화천조경천문대, 서울대와 연세대, 그리고 한국천문연구원까지 연계되어 전 세계 폭넓은 이용자들의 유입을 유도할 수 있는 검색 도구가 될 수 있다. 이번 방득룡 구술사 연구에서 구술자 개인의 주관적인 소회가 공식 기록이 다가갈 수 없는 역사적 실체에 일정 부분 가까울 수 있다는 것, 그리고 이를 통하여 개인의 역사는 공동체의 역사로 확장될 수 있다는 사실을 발견할 수 있었다. 또 연구진은 방득룡 전(前)교수의 회상을 통하여 구술자 개인의 시각으로 한국과 미국 천문학계의 공동체 역사를 재조명할 수 있었고, 이것을 아카이브 콘텐츠 확장 서비스에 반영할 수 있다는 기대를 가지게 되었다. 무엇보다 이 연구를 통하여 다양한 주제의 아카이브로 연동될 수 있는 주제어와 검색도구를 구술자 개인의 회상으로부터 유효하게 도출할 수 있다는 것을 확인하였다. 그리고 향후 한국천문 구술아카이브의 확장을 통하여 보다 다양한 활용과 연구 재활용의 선순환이 가능하다는 것도 알 수 있었다. 이는 최근 기록학계에서 대두되고 있는 LOD(Linked Open Data)의 방향성과도 흡사하여 한국천문학 구술사연구의 차세대 통합형 기록관리의 미래모형을 기대케 하는 대목이다.

  • PDF

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Monte Carlo Simulations of Detection Efficiency and Position Resolution of NaI(TI)-PMT Detector used in Small Gamma Camera (소형 감마카메라 제작에 사용되는 NaI(TI)- 광전자증배관 검출기의 민감도와 위치 분해능 특성 연구를 위한 몬테카를로 시뮬레이션)

  • Kim, Jong-Ho;Choi, Yong;Kim, Jun-Young;Im, Ki-Chun;Kim, Sang-Eun;Choi, Yeon-Sung;Joo, Kwan-Sik;Kim, Young-Jin;Kim, Byung-Tae
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.67-76
    • /
    • 1997
  • We studied optical behavior of scintillation light generated in NaI(TI) crystal using Monte Carlo simulation method. The simulation was performed for the model of NaI(TI) scintillator (size: 60 mm ${\times}$ 60 mm ${\times}$ 6 mm) using an optical tracking code. The sensitivity as a function of surface treatment (Ground, Polished, Metal-0.95RC, Polished-0.98RC, Painted- 0.98RC) of the incident surface of the scintillator was compared. The effects of NaI(TI) scintillator thickness and the refractive index of light guide optically coupling between the NaI(TI) scintillator and photomultiplier tube (PMT) were simulated. We also evaluated intrinsic position resolution of the system by calculating the spread of scintillation light generated. The sensitivities of the system having the surface treatment of Ground, Polished, Metal-0.95RC, Polished-0.98RC and Painted-0.98RC were 70.9%, 73.9%, 78.6%, 80.1% and 85.2%, respectively, and the surface treatment of Painted-0.98RC allowed the highest sensitivity. As increasing the thickness of scintillation crystal and light guide, the sensitivity of the system was decreased. As the refractive index of light guide increases, the sensitivity was increased. The intrinsic position resolution of the system was estimated to be 1.2 mm in horizontal and vertical directions. In this study, the performance of NaI(TI)-PMT detector system was evaluated using Monte Carlo simulation. Based on the results, we concluded that the NaI(TI)-PMT detector array is a favorable configuration for small gamma camera imaging breast tumor using Tc-99m labeled radiopharmaceuticals.

  • PDF

Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

  • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.369-384
    • /
    • 2006
  • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Derivation of Inherent Optical Properties Based on Deep Neural Network (심층신경망 기반의 해수 고유광특성 도출)

  • Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.695-713
    • /
    • 2023
  • In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.