• Title/Summary/Keyword: 반발력

Search Result 235, Processing Time 0.027 seconds

A Study of Structural Analysis Simulation for Squat Exercise Foot Plate (스쿼트운동장치의 풋플레이트 구조해석에 관한 연구)

  • Jung, Byung-Geun;Kim, Ji-won;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.365-372
    • /
    • 2017
  • Squat exercise is one of the important free weight exercises that can safely and effectively expect the athletic performance by establishing the rationale. Therefore, it is necessary to study the side effects caused by incorrect exercise, scientific countermeasures and to develop a exercise estimation model. It is effective and accurate to use a variety of assistive devices to calibrate athletic posture. The issues of the structural analysis for designing a foot plate for squat exercise is to model the behavior by the dynamic behavior. It should be consider that the center of gravity of each segmented body is different when the maximum load is applied. It is applied to complete system design through simulation method with kinematic dynamic, ground reaction force and load analysis for the free weight exercise equipment, VR device, and safety foot plate. In this paper, the authors propose the design method for the vertical load distribution applied in the design of the foot plate used for the squat exercise mechanism, and based on these results, design make the more safe and reliable free weight exercise equipment system.

The Effect of Squat Exercise According to Ankle Angle-Toe 0°, Toe In 10°, Toe Out 10°-on Muscle Thickness and Ground Reaction Force of Vastus Medialis Oblique and Vastus Lateralis Oblique Muscles (발목각도 Toe 0°, Toe in 10°, Toe out 10°에 따른 스쿼트 운동이 안쪽넓은근과 가쪽넓은근의 근두께와 지면반발력에 미치는 영향)

  • Ahn, Su-Hong;Lee, Su-Kyong
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the differences in muscle thickness and ground reaction force of the vastus medialis oblique and vastus lateral oblique muscles during squats at ankle angles of toe 0°, toe in 10°, and toe out 10°. Methods: In this study, 9 male and 17 female students in their 20s participated in a randomized controlled trial and were compared according to the ankle angles of toe 0°, toe in 10°, and toe out 10°. To determine the reliability and measurement of muscle thickness according to ankle angle using ultrasound equipment and muscle thickness, the participants' ankle angles-toe 0°, toe in 10°, and toe out 10°-were measured three times at the vastus medialis oblique and vastus lateralis oblique muscles during squats. At the same time, the maximum vertical ground reaction force was measured with a force plate. A total of three measurements were taken and averaged, and two minutes of squat movements were assessed between ankle angles to prevent target action. Results: The results of this study illustrated that the reliability of the vastus medialis oblique muscles and vastus lateralis oblique muscles in ankle angle was high. The difference in muscle thickness was significantly greater in comparing the toe out 10° angle with the toe 0° angle than between toe in 10° and toe out 10° in vastus medialis oblique and vastus lateralis oblique (p < 0.05). There was no statistically significant difference between the ankle angle of toe 0° and toe in 10° (p > 0.05). The maximum vertical ground reaction force was significantly greater at toe out 10° than at the ankle angle of toe 0° and toe out 10° and between toe in 10° and toe out 10° (p < 0.05). There was no statistically significant difference in the comparison between toe 0° and toe in 10° (p > 0.05). Conclusion: Squatting at an ankle angle of toe out 10° increases the dorsi flexion; thus, the stability of the ankle and the thickness of both oblique muscles increased to perform more effective squats. In addition, as the base of support widens, it is thought that the stability of the posture increases so that squat training can be performed safely.

Effect of a Maepsi Exercise Program on the Ground Reaction Force Variables of middle-aged women during Gait (8주간의 맵시 운동 프로그램이 중년여성들의 보행 동작 시 지면반력 요인들에 미치는 영향)

  • Park, Hui-Jun;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.762-770
    • /
    • 2021
  • The purpose of this study was to analyze the effect on the vertical ground reaction force, the elapsed time, and the center of pressure factors during gait by maepsi exercise program, which is a whole body exercise, to middle-aged women for 8 weeks. A total of 25 subjects participated in this study, 13 in the exercise group(age, 41±4.4 years; heigh, 162.5±5.8cm; weight, 57.8±6.7kg; body mass, 21.9±2.4kg/m2) and 12 in the control group(age, 41.1±5.6 years; height, 160.9±5.5 cm; weight, 576.2±8.1 kg; body mass, 21.7±2.9 kg/m2). In the exercise group, the maepsi exercise program consisting of 7 areas, 23 types and 77 movements, was conducted 3 times a week for 8 weeks. Two-way repeated measures ANOVA was performed to verify the ground reaction force factors during gait, and the post-test was analyzed with bonferroni adjustment(a=.05). In the exercise group, compared to the control group, the exercise group showed higher values than the control group in the elapsed time to FMWA and FPO, vertical ground reaction force at FMWA and FPO, and RMS factors of COP in the AP direction. Therefore, it was found that the 8-week maepsi exercise program improved the acceleration and deceleration exercise functions of middle-aged women who performed gait.

A Study on Driving Safety Evaluation Criteria of Personal Mobility (퍼스널 모빌리티(Personal Mobility)의 주행안전성 평가지표 연구)

  • Park, Bumjin;Roh, Chang-gyun;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.1-13
    • /
    • 2018
  • Divers types of Personal Mobility(PM) are appeared on the market after the Segway is introduced. PMs have propagated very rapidly with their ease of use, and accidents related with PM show a sudden increase. Many studies on the PM are performed as its trend, but dring safety of passengers are excluded. In this study, criteria which can be adopted for PM's driving safety evaluation are reviewed. Also result of driving safety evaluation on 3 types of PM(wheel chair, kickboard, scooter(seating/standing) and walking using deducted criteria is given. COG(Center of the gravity) and SM(Stability Metric) are finally selected two criteria among many of them used in other fields. COG indicates how the center of mass deviates from the direction of the gravity. SM is a normalized value of generated force when PM moves as internal force, angular momentum, and ground reaction force. 0 means stop, and negative value means rollover, so it can be used for safety evaluation of PM. Average and standard deviation of measurement are standard of safety on the COG analysis. Wheel chair is the most safe and kickboard is the most unstable on the COG analysis. Wheel chair is also ranked as top safe on the SM analysis. Among two riding types(seating and standing) on the scooter, seating type is evaluated more safer than standing type. It is proposed that more various type of PMs are need to get safety evaluation for drivers and devices themselves together.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.