• Title/Summary/Keyword: 반력제어

Search Result 37, Processing Time 0.032 seconds

Implementation of a Controller in a Steering Feel Simulator for SBW systems (SBW시스템을 위한 조향반력 시뮬레이터의 제어기 구현)

  • Park, Won-Yong;You, Choon-Young;Kim, Il-Hwan;Heo, Seung-Jin;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.318-319
    • /
    • 2008
  • In this paper, a steering feel simulator is designed and implemented using a steering wheel with a rotation angle sensor, torque sensor, and an ac motor for the generation of the required torque. The controller in the simulator consists of a 16-bit micro-controller, a D/A converter and A/D converters. The main objective of the controller is to perform torque control where the reference torque is calculated from the torque map for both the vehicle velocity and the wheel sensor cutout. It is shown via the experimentation using the proposed simulator that the simulator output performance can be easily understood for the variation of vehicle parameters or controller parameters.

  • PDF

Slope Detecting and Walking Algorithm of a Quadruped Robot Using Contact Forces (접촉 반력을 이용한 4 족 보행로봇의 경사면 감지 및 보행 알고리즘)

  • Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.138-147
    • /
    • 1999
  • For autonomous navigation, a legged robot should be able to walk over irregular terrain and adapt itself to variation of supporting surface. Walking through slope is one of the typical tasks for such case. Robot needs not only to change foot trajectory but also to adjust its configuration to the slope angle for maintaining stability against gravity. This paper suggests such adaptation algorithm for stable walking which uses feedback of reaction forces at feet. Adjusting algorithm of foot trajectory was studied with the estimated angel of slope without visual feedback. A concept of virtual slope angle was introduced to adjust body configuration against slope change of the supporting terrain. Regeneration of foot trajectory also used this concept for maintaining its stable walking against unexpected landing point.

  • PDF

Performance Evaluation of Vibration Control of High-rise Buildings Connected by Sky-Bridge (스카이브릿지로 연결된 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Yang, Ah-Ram;Lee, Dong-Guen;Ahn, Sang-Kyung;Oh, Jung-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • In this study, the vibration control performance of high-rise building structures connected by a sky-bridge has been investigated. The philosophy of vibration control using sky-bridges is to allow structures with different dynamic characteristics to exert control forces upon one another through sky-bridges to reduce the overall responses of the system. The the high-rise building structure connected by sky-bridge with 49 and 42 stories was used in this study to investigate the displacement, acceleration, reaction of bearings and stress of sky-bridge by analytical methods. To this end, historical earthquakes, an artificial earthquake and wind force time histories obtained from wind tunnel tests were used. Based on the analytial results, the use of sky-bridge can be effective in reducing the structural responses of high-rise buildings against wind and seismic loads.

  • PDF

Estimation of Vertical Interaction Force to the End of a Surgical Instrument by Measuring Reaction Force to the Trocar Support (트로카 고정부에 작용하는 반력을 측정하여 수술도구 말단의 수직방향 상호작용 힘을 추정하는 방법)

  • Kim, Suyong;Kim, Cheongjun;Lee, Doo Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.615-618
    • /
    • 2016
  • This paper proposes a method to estimate vertical interaction force to the end of the surgical instrument by measuring reaction force at the part supporting the trocar. Relation between the force to the trocar and the interaction force is derived using the beam theory. The vertical interaction force is modeled as a function of the reaction force to the trocar and the distance between the drape plate and the trocar. Experimental results show that error is induced by the asymmetric shape of the trocar tip because contact position between the instrument and the trocar tip is changed depending on the direction of the interaction force. The theoretical relation, therefore, is compensated and reduced. Average $L_2$ relative error of the estimated force in the x-direction and the y-direction is 5.81 % and 5.99 %, respectively.

Kinetic analysis of the lower limb in visual handicap children (시각장애 아동의 보행 시 하지의 운동역학적 분석)

  • Yi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3952-3958
    • /
    • 2011
  • This study was to investigate the difference in gait pattern between the visual handicap children and non handicap children in by analyze the biomechanical variation and pattern of lower limb. Therefore, we have made a choice of four visually handicapped children and two subjects, who had no medical disorder for the last six months. In order to collect the gait pattern data of each group, we have used six infrared cameras and one forceplate Also, we have used QTM program to collect the raw data and Visual3D program to calculate kinetic variable. The results were as follows, An/Posterior GRF of breaking phase and propulsion phase in stance phase was lower in visual handicapped children than that of non handicapped children and breaking phase was longer than propulsion phase. extension moment at the ankle was quite lower than general gait pattern and there was little variation at the knee joint which makes the results differ from the general gait pattern. However, hip joint moment was relatively higher than that of other joints. Mechanical variation of lower limb, in case of foot and shank, showed similar results. but generated very low mechanical energy. In thigh, the form of mechanical energy generation was slightly different in each group but generated more mechanical energy than other segments.

Continuous Excavation Type TBM Parts Modification and Control Technology for Improving TBM Performance (TBM 굴진향상을 위한 연속굴착형 TBM 부품개조 및 제어기술 소개)

  • Young-Tae, Choi;Dong-Geon, Lee;Mun-Gyu, Kim;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.345-352
    • /
    • 2022
  • The existing NATM (New Austrian Tunneling Method) has induced civil compliants due to blasting vibration and noise. Machanized excavation methods such as TBM (Tunnel Boring Machine) are being adopted in the planning and construction of tunneling projects. Shield TBM method is composed of repetition processes of TBM excavation and segment installation, the machine has to be stopped during the later process. Consecutive excavation technology using helical segment is under developing to minimize the stoppage time. The modification of thrust jacks and module are planned to ensure the advance force acting on the inclined surface of helical segment. Also, the integrated system design of hydraulic circuit will be remodeled. This means that the system deactivate the jacks on the installing segment while the others automatically act the thrusting forces on the existing segments. This report briefly introduces the mechanical research part of the current consecutive excavation technological development project of TBM.

Active Optimal Control Techniques for Suppressing Dynamic Load in Vibration (진동에서 생기는 동적 하중을 줄이기 위한 능동 최적 제어)

  • 김주형;김상섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.749-757
    • /
    • 2002
  • Excessive vibration in flexible structures is a problem encountered in many different fields, causing fatigue of structural components. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuate vibrations. Recently active techniques have been developed to enhance vibration control performance beyond that provided by their passive counterparts. Most often, the focus of active control methods has been to suppress structure displacements. In cases where vibration results in structure failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic loads which would be even more harmful to supports) . This paper presents two optimal control methods for attenuating steady state vibrations in flexible structures. One method minimizes shaft displacements while another minimizes dynamic reaction forces. The two methods are applied to a model of a typical flexible structure system and their results are compared. It is found that displacement minimization can increase loads, while load minimization decreases loads.

Development of the Real-time Controller for Control Loading System in Aircraft Simulator (항공기 시뮬레이터용 조종 반력 시스템 실시간 제어기 개발)

  • Park, Joon-Ho;Kim, Tae-Kue;Park, Seung-Gyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1846-1847
    • /
    • 2006
  • In this study, we developed the real-time controller for control loading system (CLS) of aircraft simulator. The CLS is given the forces as inputs: the exerted force by a pilot, which is determined according to the position of the control stick, and the calculated force by the host computer. And then CLS makes the pilot feel the back loading force by supplying the motor drive with the actuator signal. The developed real-time controller for CLS is organized into the five parts which are the position sensing part including a encoder, the A/D converter part for the analog load cell signal, the communication interface part to communicate with the host, the D/A converter for the actuator signal, and the CPU DSP2812 to carry out a control algorithm. We constructed the test control loading system and carried out the experiment with the developed real-time controller. The experimental results showed that the real-time controller generates the back loading forces similar to the desired back loading force graph.

  • PDF

A Study on Control Parameter Tuning for Actuator in Control Loading System (조종 반력 시스템에서의 액츄에이터 제어 파라미터 조정에 관한 연구)

  • Yoon, Tae-Sung;Park, Seung-Gyu;Park, Joon-Ho;Kim, Tae-Kue
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.249-251
    • /
    • 2006
  • In this study, a systematic and effective tuning method of the actuator control parameters of the control loading system for aircraft based on control theory is presented. Firstly, to raise the time response of the system, the proportional gain and the integral gain of the velocity control loop is maximized within the range where vibration and noise does not occur. And then the position control loop is composed by getting the transfer function of the control loading system including the velocity control loop. With the root locus of the composed position control loop, the proportional gain of the position control loop that keeps stable transient state and leads good time response of the system is predicted, and the simulations are performed by using the predicted gain. Lastly, the actuator control parameters of actual control loading system are set to the previously obtained gain values. And the experiments to actuate the control loading system are executed. It shows that the tuning method of the actuator control parameter proposed in this study is applied to actual control loading system very well by comparing the results of the experiments with those of the simulations.

  • PDF

SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling (원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어)

  • Cha, Keum-Gang;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.