• Title/Summary/Keyword: 반력분배율

Search Result 2, Processing Time 0.013 seconds

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (II) Validity Evaluation (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (II) 적합성 평가)

  • Chae, Hyun-Soo;Kim, Byung-Hun;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.13-22
    • /
    • 2011
  • In this study, ultimate strengths of 51 continuous reinforced concrete deep beams were evaluated by the ACI 318M-08's strut-tie model approach implemented with the presented indeterminate strut-tie model and load distribution ratio of the companion paper. The ultimate strengths of the continuous deep beams were also estimated by the shear equations derived based on experimental results, conventional design codes based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the presented strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables of shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength. The present study results of ultimate strengths obtained using the indeterminate strut-tie model and load distribution ratio of the continuous deep beams agree fairly well with those obtained using other approaches. In addition, the present approach reflected the effect of the primary design variables on the ultimate strengths of the continuous deep beams consistently and accurately. Therefore, the present study will help structural designers to conduct rational and practical strut-tie model designs of continuous deep beams.