• Title/Summary/Keyword: 반능동 현가제어시스템

Search Result 31, Processing Time 0.024 seconds

Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems (자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF

Vehicle dynamic analysis of continuously controlled semi-active suspension using hardware-in-the-loop simulation (Hardware-in-the-loop 시뮬레이션을 이용한 연속 가변식 반능동 현가 시스템의 차량 동역학적 해석)

  • 황성호;허승진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1107-1112
    • /
    • 1996
  • A semi-active suspension system with continuously variable damper is greatly expected to be mainly used in the future as a high-performance suspension system due to its cost-effectiveness, light weight, and low energy consumption. To develop the suitable control logic for the semi-active suspension system, the hardware-in-the-loop simulation is performed with the experimental continuously variable damper combined with a quarter-car model. The hardware-in-the-loop simulation results are compared for passive, on/off controlled, and continuously controlled dampers in the aspects of ride comfort and driving safety, assuming each damper to be installed on a vehicle.

  • PDF

Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems (능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가)

  • Yun, Il-Jung;Im, Jae-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF

Roll Characteristics Evaluation due to the Steering of a SUV with MR Dampers (MR댐퍼를 장착한 SUV의 조향으로 인한 롤 특성 평가)

  • Kang, I.P.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • This study is about roll characteristics evaluation to show the advantage of using MR(magneto-rheological) dampers for steering of a SUV(sports utility vehicle). Roll characteristics is very important to observe the roll-propensity of the SUV. ADAMS/Car program was used to simulate the basic steering motion, using 63 D.O.F. vehicle model. Sky-Hook and Ground-Hook control algorithms were used as a semi-active suspension system controller. The roll characteristics from the steering motion were compared between the simulation results from the semi-active suspension system and the passive suspension system.

  • PDF

A Controller Design for Semi-active Suspension System Using Wavelet Treasform and Evolution Strategy (웨이브릿 변환과 진화전략에 의한 반능동 현가장치의 제어기 설계)

  • Kim, Dae-Jun;Kim, Han-Soo;Jeon, Hyang-Sig;Choi, Young-Kiu;Kim, Sung-Shin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.120-129
    • /
    • 2001
  • A two-degree-of-freedom quarter-car model is used as the basis for LQ and the proposed controller design for a semi-active suspension. The LQ controller results in the best rms performance trade-offs(as defined by performance index) between ride, handling and packaging requirements. In LQ controller, however, the conflict between road holding and ride comfort remains. The adaptive semi-active suspension control based on the road frequency are introduced in this paper. With this method, the trade-off between road holding and ride comfort can be relaxed. The road frequency is estimated by wavelet transform if rattle space signal. The simulation results show that the proposed controller is superior to the conventional LQ controller.

  • PDF

Semiactive MR Fluid Suspension System Using Frequency Shaped LQ Control (주파수 성형 LQ제어기를 이용한 반능동식 자기유변유체 현가 시스템)

  • Kim, Gi-Deok;Jeon, Do-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2274-2282
    • /
    • 2000
  • An MR(Magneto-Rheological) fluid damper is designed and applied to the semi-active suspension system of a 1/4 car model. The damping constant of the MR damper changes according to input current and the time delay of the damper is included in the system dynamics. The passive method, LQ control and Frequency shaped LQ control are compared in experiments. The advantage of the proposed frequency shaped LQ control is that the ride comfort improves in frequency range from 4 to 8Hz where human body is most sensitive and the driving safety improves around the resonance frequency of unsprung mass, 11Hz. The experiments using a 1/4 car model show the effectiveness of the algorithm.

Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve (반능동현가장치용 전자제어식 연속가변댐퍼의 모델링 및 동특성 해석)

  • Do, Hong-Mun;Hong, Gyeong-Tae;Hong, Geum-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.158-166
    • /
    • 2002
  • A mathematical model and dynamic characteristics ova continuously variable damper for semi-active suspen- sion systems are investigated. After analyzing the geometry of a typical continuously variable damper, mathematical models fur individual components including piston, orifices, spring, and valves are first derived and then the flow equations for extension and compression strokes are investigated. To verify the developed mathematical model, the dynamic response of the model are simulated using MATLAB/SIMULINK and are compared with experimental results. The proposed model can be used not only for mechanical components design but also for control system design.

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Active Dynamic behavior Control of Vehicle by Using Semi-intelligent Suspension System (반지능형 현가시스템에 의한 차량의 능동적인 동적거동제어)

  • 김대원;배준영;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.15-21
    • /
    • 1998
  • Mostly a ride comfort and handling performance of vehicle is influenced by dynamic behavior control of vehicle. We are focusing on development of a semi-intelligent suspension system with continuously variable damper(HS-SH type). only using absolute velocity of sprung mass without using the relative velocity besides having lower system prices and a little energy requirement. In this paper, the system is realized in consideration to control strategy (sky-hook control, hybrid filter, etc.) and has been proved to have improvement of behavior control of vehicle by quarter car and Vehicle test, respectively.

  • PDF

Intelligence Control Characteristics of a Digital Damper (디지털 댐퍼의 지능제어 특성)

  • Song, Joon-Ho;Lee, Yuk-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • The objective of this paper is to investigate the Intelligence control characteristics of a digital damper. This paper deals with a two-degree-of-freedom suspension using the damper with ER fluid for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFIS control method. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF