• Title/Summary/Keyword: 반능동 장치

Search Result 85, Processing Time 0.025 seconds

Performance Evaluation of the New Smart Passive Control Device using Shaking Table Test (진동대 실험을 통한 신개념 스마트 수동제진장치의 제진성능 평가)

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Seok-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • This paper presents the vibration control performance of the smart passive control system to suppress the undesired vibration of the structure subjected to the earthquake loadings. Smart passive control system is the MR damper-based control system augmented with electromagnetic induction(EMI) device which consists of permanent magnets and solenoid coils. According to the Faraday's law of electromagnetic induction, an EMI device produces electrical energy from the mechanical energy due to the reciprocal motions of the structure and provide it to the MR damper. The smart passive control system can be the simple and easy to implement and maintain control system by replacing the feedback control system including sensors, controllers and external power sources of the conventional MR damper-based semiactive control system with the EMI device. The control performance of the smart passive control system is evaluated through the set of shaking table test considering the various historical earthquake loadings.

Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems (능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가)

  • Yun, Il-Jung;Im, Jae-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

Smart Passive System Based on MR Damper (MR댐퍼 기반의 스마트 수동제어 시스템)

  • Cho, Sang-Won;Jo, Ji-Seong;Kim, Chun-Ho;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.51-59
    • /
    • 2005
  • Magnetorheological(MR) dampers are one of the most promising semi active control devices, because they have advantages such as small power requirement, reliability, and low price to manufacture. To reduce the responses of structures with MR dampers, a control system including power supply, controller, and sensors is required. However, when a mount of MR dampers are used to a large?scale civil structure such as cable stayed bridges, the control system becomes complex. Therefore, it is not easy to install and maintain the MR damper based control system. To resolve above difficulties, This paper proposes a smart passive system that consists of a MR damper and an electromagnetic induction(EMI) system. According to the Faraday’s law of induction, EMI system that is attached to the MR damper produces electric energy. The produced energy is supplied to the MR damper. Thus, the MR damper with EMI system does not require any power at all. Furthermore, the induced electric energy is proportional to external loads like earthquakes, which means the MR damper with EMI system is adaptable to external loads without any controller and corresponding sensors. Therefore, it is easy to build up and maintain the proposed smart passive system.

Drop Test Simulation of semi-active Landing Gear using Commercial Magneto-Rheological Damper (상용 MR 댐퍼를 이용한 반능동형 착륙장치 낙하실험)

  • Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.44-48
    • /
    • 2010
  • This paper is used the commercial magneto-rheological(MR) damper for landing gear. The damping characteristics of Commercial MR damper by changing the intensity of the magnetic field are investigated and the dynamic responses of the landing gear. it is set up tset equipment, the landing gear drop test system. The landing gear involved drop testing the gear. The landing gear is tested by implementing sky-hook control algorithm and its performance is evaluated comparing to the result.

  • PDF

Analysis of the Radiation Patterns of Satellite SAR System with Active-Transponder (능동전파반사기를 이용한 위성 SAR 시스템 방사 패턴 분석)

  • Hwang, Ji-Hwan;Kweon, Soon-Koo;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1204-1211
    • /
    • 2012
  • Measurement and analysis results of the extracted radiation-patterns from the field-experiments which were conducted to acquire the generic technology for calibration and validation of the satellite SAR system(Synthetic Aperture Radar) are presented in this study. Prototype of active transponder is adjustable within maximum 63.1 dBsm of RCS (Radar Cross Section) and includes the receiving-function with external receiver. To increase an accuracy of these field experiments, we repetitively measured satellite SAR systems of the same operating mode(i.e., COSMO-SkyMed No. 2 & 3, hh-pol., strip-map himage mode, 3 m resolution). Then, the reliability of experimental results was cross-checked through analysis of the RCS of active transponder on SAR image. The property of azimuth radiation patterns of satellite SAR system extracted from them has $0.352^{\circ}$ of HPBW(half-power beamwidth), $0.691^{\circ}$ of FNBW(first-null beamwidth), and 11.17 dB of PSLR(peak to side lobe ratio), respectively.

Modeling of MR Damper Landing Gear Considering Incompletely Developed Fluid Flow (불완전 발달 유체 유동을 고려한 MR댐퍼 착륙장치 모델링)

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • A semi-active MR damper landing gear is a damper that generates a fluid damping force and a magnetic field control damping force when the MR fluid passes through annular flow paths. In the case of MR fluid passing through annular flow paths, an incompletely developed flow inevitably occurs, causing an error in calculating damper inner forces including the fluid damping force. This error results in an inaccurate design of damper structural parameters and control gain selection, resulting in deterioration of dynamic characteristics and shock absorption performance of the landing gear. In this paper, we derived a mathematical model of an MR damper landing gear considering additional damping force generated in the entrance region of annular flow paths of the MR damper. If the mathematical modeling derived from this paper is applied to the design and optimization process of an MR damper landing gear, excellent performance of the MR damper landing gear is expected.

The Nonlinear Analysis and Modeling of the ER Fluid Damper Using Higher Order Spectrum (고차 주파수 스펙트럼을 이용한 ER 유체 댐퍼의 비선형 특성 해석 및 모델링 연구)

  • Kim, Dong-Hyun;Joung, Tae-Whee;Joh, Joongseon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.105-112
    • /
    • 2006
  • The nonlinear damping force model is made to identify the properties of the ER (electro-rheological) fluid suspension damper. The instrumentation is carried out to measure the damping force of the ER damper. The higher order spectral analysis method is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. The distinctive higher order nonlinear characteristics are observed. The nonlinear damping force model, which has the higher order velocity terms, is proposed with the result of higher order spectrum analysis. The higher order terms coefficients, which vary according to the strength of the electric field, are calculated using the least square method.

Experimental Verification of Semiactive Control Systems for Stay Cable Vibration (케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가)

  • 장지은;정형조;정운;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF

High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper (연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기)

  • Choi, Ju-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.