• Title/Summary/Keyword: 반능동 댐퍼

Search Result 62, Processing Time 0.015 seconds

Dynamic Characteristics of Semi-Active Shock Absorber Using Electrorheological Fluid (ER 유체를 이용한 반능동 완충장치의 동적 특성)

  • Kim, Do-Hyung;Cho, Ki-Dae;Jung, Yong-Hyun;Lee, In;Oshima, Nobuo;Fukuda, Takehito
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-21
    • /
    • 2001
  • Electrorheological(ER) fluid is a kind of smart material with variable shear stress and dynamic viscosity under various electric field intensity. Electric field can control the damping characteristics of ER damper. The objective of this study is the analysis of the performance of ER damper and its application to shock absorber. Idealized nonlinear Bingham plastic shear flow model is used to predict the velocity profile between electrodes. Cylindrical dashpot ER damper with moving electrode is constructed and tested under various electric fields. The analytic and experimental results for damping force are compared and discussed. Drop test system using ER damper is prepared to identify transient vibration characteristics. The rebound is eased as the applied electric field increases. When semi-active control algorithm is applied, rebound phenomenon disappears and vibration energy level decays faster than the case of zero electric field.

  • PDF

Semi-active Control of a Seismically Excited Cable-Stared Bridge Considering Dynamic Models of MR Fluid Damper (MR 유체 댐퍼의 동적모델을 고려한 사장교의 반(半)능동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, B.F.,Jr;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control-structure interaction. This benchmark problem focuses on a cable-stayed bridge in Cope Girardeau, Missouri, USA, for which construction is expected to be completed in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi River. In this paper, magnetorheological(MR) fluid dampers are proposed as the supplemental damping devices, and a clipped-optimal control algorithm is employed. Several types of dynamic models for MR fluid dampers, such as a Bingham model, a Bouc-Wen model, and a modified Bouc-Wen model, are considered, which are obtained from data based on experimental results for full-scale dampers. Because the MR fluid damper is a controllable energy-dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.