• Title/Summary/Keyword: 반강성포장

Search Result 13, Processing Time 0.029 seconds

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Evaluation of the Performance and Moisture Retaining Ability in Semi-Rigid Pavement (반강성포장의 성능 및 보수성 평가)

  • Park, Tae-Soon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • This study presents the test results on the performance and the moisture retaining ability of semi rigid pavement using the moisture retaining grouting. The two kinds of the grouting materials were used for the Laboratory tests. The method of the tests includes the compression(3 hours and 7 days) and flexural strength(7 days) varying the P lot flow values. The test results show that the variation of the P lot value has no great effects on the strength, however, the different strength was found as the different grouting materials were used. The performance of the semi rigid pavement was evaluated varying the air void ration of the base asphalt pavement. The test results show that the flexural strength of the semi rigid pavement increases with increasing the air void of the base asphalt pavement so that the flexural strength of the semi rigid asphalt pavement can be effected by the air void of the base asphalt pavement. The moisture retaining tests were conducted and compared in the field the comparisons were made with the dense grade asphalt pavement and the semi rigid asphalt pavement with and without spraying the water. The difference of the temperature of the semi rigid pavement with the spraying water has recorded $11^{\circ}C$ when it compared with the dense grade asphalt pavement and $4^{\circ}C$, when it compared with the semi rigid pavement without the spraying the water. It can be seen that decrease the temperature of the pavement by the moisture retaining ability from the semi rigid pavement.

  • PDF

Properties of SPE-Based Cement Grout for Semi-Rigid Pavements (Sulfur Polymer Emulsion을 활용한 반강성 포장용 시멘트 주입재의 특성)

  • Lee, Byung-Jae;Lee, Jun;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • The development of the oil refining industry has resulted in an annual 120 million tons of sulphur, which is a by-product of the desulphurization process. To exploit this abundance, the applications of sulphur must be expanded. as excellent durability of reuse of leftover sulphur which has high potential for utilization in construction materials, the study is actively in progress. Meanwhile, there has been active research on semi-rigid pavements that draw on the strengths and overcome the weaknesses of asphalt and concrete pavements. Acrylate is used to prevent cracking but involves a high cost, thus, an alternative material is required. As such, this study presents methods on the reuse of leftover sulphur and examines the engineering performance of grout containing sulfur polymer emulsion (SPE) for use in semi-rigid pavements. Our analysis shows that grout in which 30% of acrylate is replaced with SPE has superior properties in terms of time of flow and strength compared to regular grout. However, performance declined when more than 50% of acrylate was replaced by SPE, indicating that the optimum replacement level is 30%. Through SEM analysis, we found that grout with utra harding cement in this study at three hours had similar hydration properties to that of Type 1 Ordinary Portland Cement (OPC) at seven days, and maintained the properties regardless of grout containing SPE. OPC and grout with a replacement level of 30% displayed similar levels of chloride invasion resistance, whereas grout without SPE was far less resistant. Within the scope of this paper, the optimum replacement level of acrylate with SPE was found to be 30% in consideration of various properties such as time of flow, strength, and chloride invasion resistance.

A Study on the Properties of Roller Compacted Concrete Pavement for Environmental Friendly Bike Road (친환경 자전거도로를 위한 롤러 다짐 콘크리트 포장의 기초물성에 관한 연구)

  • Lee, Chang-Ho;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2010
  • Recently, usage bicycle has been encouraged to reduce energy consumption and $CO_2$. For this purpose, lots of bike road construction are planned. Typical type of pavement used in bikeroad such as asphalt concrete pavement, portland cement concrete pavement, colored pavement, soil pavement. However, these pavement types may need high construction cost comparing the required capacity of bike road. In this study, roller compacted concrete pavement which are economical and durable, are investigated to use as bike road pavement. The optimum compaction level and mix design of roller compacted concrete pavement are suggested by exploring strength test with various mixture ratio and compaction level, Also durability was examined based on freeze-thaw and scaling test. In addition, the cost and amount of carbon emission during in the construction of roller compacted concrete were evaluated and compare with the cost and carbon emission of typical portland cement concrete.

An Experimental Study on Semi-Rigid Pavement (반강성포장에 대한 실험적 연구)

  • 임승욱;양성철;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.225-231
    • /
    • 1996
  • The dense graded asphalt concrete materials have been used for construction of pavement for a long time. The performance of asphalt concrete pavement, however, is influenced by various factors including high temperature and heavy axle loads which cause plastic deformation. The plastic deformation is one of the main functional disadvantages of flexble pavement. In this study, the semi-rigid pavement is considered to solve the problem. A set of experimental evaluation on semi-rigid pavement material has been coducted in laboratory to obtain it's physical properties and serviceabilities. The results of tests, including compressive strength, flexural strength, ravelling and wheel tracking, show that the semi-rigid pavement has a good mechanical properties and serviceabilities. Consequently, the semi-rigid pavement may be suitable to bridge deck, tunnel, slow lane and parking area pavements.

  • PDF